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Closed-Loop Stability Analysis of Voltage Mode Buck Using a
Proportional-Delayed Controller

J.-E. Hernández-Dı́eza, C.-F. Méndez-Barrios∗a, S.-I. Niculescub, E.-J. González-Galvána, G. Mejı́a-Rodrı́gueza

& V. Ramı́rez-Riverac

Abstract— This paper focuses on the design of a P-δ con-
troller for the stabilization of a buck DC/DC converter. The
basis of this work is a geometric approach which allows
to partition the parameters space into regions with constant
number of unstable roots. The main contribution of the paper
is that it provides an explicit tool to find P-δ gains ensuring the
stability of the closed-loop system. In addition, the proposed
methodology enables the design a non-fragile controller with
a desired exponential decay rate σ . In order to illustrate
the effectiveness of the proposed controller, some numerical
examples are presented.

I. INTRODUCTION

The generation, conversion and transmission of electrical
energy has raised awareness of the relevance of power
electronics in today’s applications; among the most popular
applications we may consider are those related to renewable
energies. This fact has established power electronics as an
important subject in electrical and electronics engineering.
The basic topologies in electrical conversion systems con-
cerns to AC/DC, AC/AC, DC/AC and DC/DC. This paper
considers a buck converter, which due to its remarkable
efficiency and simplicity is one of the most popular DC/DC
converters in power electronics.

On the other hand, in mechanical, electrical and electronics
engineering, control theory is also an important subject
with suitable applications in these fields. The automation
of industrial processes has established the importance of
control theory. Low-order controllers are one of the most
widely applied strategies to controlled industrial processes
(see, e.g., [1], [2], [3]). This “popularity” can be attributed
to their particular distinct features: simplicity and ease of
implementation.

Among low-order controllers, those of PID-type are
known to be able to cope with uncertainties, disturbances,
elimination of steady-state errors and transient response im-
provement (see, for instance, [4]-[5]). However, as reported
in [4], [6], the main drawbacks of PID controllers lies
in the tuning of the derivative term, which may amplify
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high-frequency measurement noise. Moreover, as mentioned
in [1], [3], [7], the above arguments advise to avoid the
derivative action in most applications. In order to circumvent
the above mentioned problem, we can notice that the Euler
approximation of the derivative,

y′ (t)≈ y(t)− y(t− ε)

ε
,

for small ε > 0, suggests to replace the derivative action by
using delays [8], [9]. Nevertheless, it is well recognized that
the presence of a delay in the feedback loop of continuous-
time systems is often accompanied with oscillations and
instability, bandwidth sensitivity, among others (see, for
instance, [10], [11]). However, it is worth mentioning that
there exist some situations when the delay may improve the
system stability as explained in the classical example [12],
[13], where an oscillator is controlled by one delay “block”:
(gain, delay), with positive gains and small delay values (a
detailed analysis of such an approach can be found in [14]).

Inspired by the above observations, the design of low-
order controllers with delay as a control parameter have
been addressed in several works, for example, [9] (stabilizing
chains of integrators by using delays), [15] (multiple delay
blocks), [16] (bounded input,single delay), to mention a
few. It is worth to notice that this type of controllers add
two degrees of tuning (gain, delay) to a closed-loop system
analysis.

In this paper, we propose the use of a P−δ controller for
the stabilization of a buck DC/DC converter. This controller
consists of a low-order controller with two blocks: propor-
tional + proportional-delayed. The control law for this type
of scheme is given as:

u(t) := kpe(t)+ kδ e(t− τ), (1)

where kp,kδ and τ are real parameters and e(t) is the error
signal of the control scheme. One of the main advantages to
study this type of controller is that it is the first step for a
further analysis considering a delayed nature in the control
law (τp) due to signal processing, i.e.,

u(t− τp) = kpe(t− τp)+ kδ e(t− (τp + τ)). (2)

The proposed approach in this paper includes a deep
analysis of the closed-loop characteristic equation, which
considers only a delayed term due to the controller nature.
This involves problems such as stability, σ -stability and



controller fragility, which are studied individually in the
following sections.

The organization of the remaining part of the paper is
given as follows: Section II discusses the modelling of a buck
DC/DC converter. Section III is the most important contri-
bution of this paper and it concerns to the stability criterion
of the closed-loop system in two manners: considering any
possible delay value (independent-delay stability) and a fixed
delay value. Section IV studies the σ -stability and fragility
problems. Section V shows some illustrative results for the
application of the methods developed in this paper and some
simulation results. Finally, concluding remarks are addressed.

II. PRELIMINARY RESULTS

Figure 1 depicts the classical topology of a Buck DC/DC
converter, where vs and vo are the supply and output voltage,
respectively. This configuration contains four basic elements:
inductor (L), capacitor (C), diode (D) and a controlled switch
(Q). Furthermore, a resistive load R is assumed. Then,
considering a fixed DC voltage supply vs, the main idea is to
use the switching pattern of D in order to adjust the output
voltage vo. The most widely used switching technique is the
PWM scheme, which consists of creating a switching pattern
of D at a fixed frequency f with an activation period ton such
that the duty cycle of the PWM is given as U := f · ton.
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Fig. 1. Topology of the buck DC/DC converter [17].

Motivated by the remarks presented in [17], a linear
control formulation can be provided by assuming that all
variables have a constant value and a fluctuating part, i.e.,

vs(t) = Vs + ṽs(t), (3)
vo(t) = Vo + ṽo(t), (4)
io(t) = io + ĩo(t), (5)
u(t) = U + ũ(t). (6)

Since a resistive load is assumed, then from a control theory
perspective, the problem can be formulated as the task to
reduce the variations at the output voltage ṽo(t) despite
of possible disturbances in the supply voltage ṽs(t) and
variations in the load by adding a correction factor ũ(t) to
the nominal duty cycle U .

The dynamic model of the buck DC/DC converter is
derived assuming that the system runs in a continuous-
conduction mode (CCM). The dynamic model is obtained
by defining two operation modes for the switching device

Q: ON(µ = 1) and OFF(µ = 0). Applying Kirchoff’s law
to both equivalent circuits, a switched model is derived.
Consequently, by considering a PWM switching pattern,
an averaged state-space model can be obtained (see, for
instance, [18]), where the averaged states [x1,x2] := [iL,vo]
are defined as:

x1 :=
1
T

∫ t

t−T
iL(h)dh, and x2 :=

1
T

∫ t

t−T
vo(h)dh.

Integrating the switch state µ over the commutation period
T , a new control variable u := 1

T
∫ t

t−T µ(h)dh is defined and
it represents the duty cycle. Then, the averaged model of the
buck DC/DC converter considering variations in the supply
voltage vs is given as:

ẋ1 = −x2

L
+

Vs + ṽs

L
u,

ẋ2 = −x1

C
− x2

RC
. (7)

Remark 1: It is worth mentioning that this averaged
model can describe the nature of the system only if the
commutation frequency f is sufficiently large.

Now, the relations in the converter for the mean values
(Vs,Vo, Io,U) can be derived from (7) by setting the deriva-
tives equal to zero, which leads to:

IL =
Vo

R
, Vo =UVs. (8)

Finally, taking a linear approximation from (7) around the
nominal conditions, two transfer functions with respect to
the variations in the output voltage ṽo can be defined as:

G1(s) :=
ṽo(s)
ũ(s)

=Vs

1
LC

s2 + 1
RC s+ 1

LC

, (9)

G2(s) :=
ṽo(s)
ṽs(s)

=U
1

LC

s2 + 1
RC s+ 1

LC

. (10)

A linear control approach is considered for ensuring
stability in the closed-loop system. More precisely we study
the application of the P−δ controller given by:

C(s) := kp + kδ e−τs, (11)

where k := [kp,kδ ]
T are the controller gains and τ is a fixed

time-delay. We aim to analyze the stability of the system
through the closed-loop transfer function:

T (s) =
C(s)G1(s)

C(s)G1(s)+1
. (12)

III. STABILITY ANALYSIS

As established above, we are interested in finding the sta-
bility regions in the (kp,kδ )-parameters space considering a
fixed delay-value τ . To this end, let us consider the open-loop
transfer function G1(s) (9), along with the P− δ controller
(11), leading to the closed-loop characteristic equation:

∆(s) :=
LC
Vs

s2 +
L

VsR
s+

1
Vs

+ kp + kδ e−τs = 0. (13)



In order to simplify the analysis, in the remaining part of the
paper we will adopt the following notation:

a :=
LC
Vs

, b :=
L

RVs
, c :=

1
Vs

. (14)

In this way, we can rewrite the characteristic equation as:

∆(s) = as2 +bs+ c+ kp + kδ e−τs = 0. (15)

It is well known that the stability of the closed-loop
system is directly related to the location of the roots of (15)
(see, [11], for further details). More precisely, the closed-
loop system is stable if and only if all the roots of the
characteristic equation are located in the LHP (Left-Half
Plane) of the complex plane.

Definition 1 (Frequency crossing set): The frequency
crossing set Ω⊂ R is the set of all ω such that, there exist
at least a triplet (kp,kδ ,τ) for which:

∆( jω;kp,kδ ,τ) = 0. (16)
Remark 2: It is clear that if we take the complex conjugate

of (16), the following equality holds:

∆(− jω;kp,kδ ,τ) = ∆( jω;kp,kδ ,τ).

Therefore, in the rest of the paper we will consider only
nonnegative frequencies, i.e., Ω⊂ R+∪{0}.

Definition 2 (Stability Crossing Curves): The stability
crossing curves T is the set of all parameters
(kp,kδ ,τ) ∈ R2 × R+ for which there exist at least
one ω ∈ R+ ∪ {0} such that ∆( jω;kp,kδ ,τ) = 0. For a
fixed delay value τ∗ ∈ R+, any point k ∈ T is known as a
crossing point.

A. Delay-Independent Stability
As mentioned in the introduction, first, we analyze the

stability of the closed-loop system considering any possible
fixed delay value τ ∈ R+, this particular result is shown as
follows:

Proposition 1: Let a,b,c ∈ R+, then, the buck DC/DC
converter is asymptotically stable independent of the delay
value τ ∈ R+, if the controller gains satisfy the following
conditions:

k2
δ

<
b2

4a2

(
4akp +4ac−b2) , (17)

kp >
b2

4a
− c. (18)

B. Stability Crossing Curves Characterization
Now, in order to perform a stability analysis for a specific

delay value in the controller design, we first need to construct
the stability crossing boundaries. Then, it will be useful
to characterize the behavior of the roots movement as a
parameter variation crosses some of these boundaries. This
section focuses on analyzing such a behavior.

Proposition 2: Let τ ∈ R+ be a fixed value and σ ,ω ∈
R. Then, ∆(s) has a root at s = σ + jω , if and only if the
controller gains k(σ ,ω) := [kp,kδ ]

T , are given as:{
kp(σ ,ω) = a(ω2−σ)− (2aσ +b)ω cot(τω)−bσ − c,
kδ (σ ,ω) = (2aσ +b)ωeτσ csc(τω), if ω 6= 0,

.

kδ = eτσ
[
−kp−

(
aσ

2 +bσ + c
)]
, if ω = 0. (19)

The stability crossing curves are characterized in the follow-
ing result.

Proposition 3: Let τ ∈R+ be a fixed delay value and Ω :=
∪̀Ω`∪{0} for ` ∈N, where the subsets Ω` are defined as:

Ω` :=
{

ω ∈ R+

∣∣ω ∈ (π

τ
(`−1), π

τ
`
)}

. (20)

Then, ω ∈ Ω \ {0} is a crossing frequency if and only if
k(ω) := [kp(ω),kδ (ω)]T , where:

kp(ω) =aω
2− c−bω cot(τω), (21)

kδ (ω) =bω csc(τω), (22)

defines a crossing point k(ω) ∈T . Moreover, the line

kδ =−kp− c, (23)

defines a stability crossing curve at ω = 0.
Given all stability crossing points k(ω) and the frequency

crossing set Ω, we can define each stability crossing curve
through its continuity as follows:

T0 :=
{

k ∈ R2 ∣∣kδ =−kp− c
}
, (24)

T` :=
{

k(ω) ∈ R2 |ω ∈Ω` for ` ∈ N
}
. (25)

Finally, we describe the set T as:

T = ∪̀T`, ` ∈ N∪{0}. (26)

C. Stability Region with a Fixed Delay

It is clear that if kδ (ω) 6= 0 for ω ∈ Ω` and ` ∈ N, then
the stability crossing curves T` does not crosses the kp−axis.
Furthermore, the only curve that crosses the kp−axis, pre-
cisely at kp = 0 is T0, which is the line defined in (24).
Now, notice that since the physical parameters L, C and R
are positive, then a,b,c ∈ R+. Now, observing the sign of
kδ (ω), we can conclude that a stability crossing curve T`

with ` even or ` odd is located above or below the kp−axis,
respectively. Finally, bearing in mind the above facts, it will
be useful to introduce the following sets:

B` :=


∣∣∣k̃δ < kδ ; ∀k ∈Ti for ` ∈ 2N

k̃ ∈ R2
∣∣∣k̃δ > kδ ; ∀k ∈T` for ` ∈ 2N+1∣∣∣k̃δ <−k̃p− c for `= 0

.

Hence, the sets B` are the collection of all points below and
above the curves T` for ` odd and ` even, respectively, and
the set B0 is the set of all points below the stability crossing
curve T0. Finally, we have the following proposition:

Proposition 4: Given a fixed delay τ ∈ R+, there always
exists an open connected stability region H defined by:

H :=
⋂
`∈N

B`

⋂
B0. (27)

Furthermore, H is unbounded.



D. Crossing Directions Characterization

In order to compute a stability index which is the number
of roots in the RHP for a given parametrical region it is
of interest to determine the roots tendency as the vector k
deviates from the curve T . The following results are the
main tools applied in this paper to achieve such a task.

Proposition 5: A pair of roots of the characteristic equa-
tion (15) moves from the LHP to the RHP as k crosses a
stability crossing curve k(ω) with ω 6= 0 in the increasing
direction of kχ for χ ∈ {p,δ} if:

Cχ , b(τω cot(τω)−1)cos(ηχ τω)+ηχ(bτ +2a)ω sin(τω)> 0,

where the indicative function ηχ is defined as:

ηχ :=
{

0, if χ = p,
1, if χ = δ .

(28)

Furthermore, the crossing is from the RHP to the LHP if the
inequality is reversed.
Observe that Proposition 11 does not give any information
about the crossing when ω = 0. The following result fills
this gap.

Proposition 6: Given a fixed delay τ ∈R+. Then, one root
of (15) crosses from the LHP to the RHP of the complex
plane through the origin as k crosses T0 from left to right
if the intersection of k and T0 is located at the left of the
point k0 ∈T0, defined by:

k0 :=
[
kp0 ,kδ0

]T
=

1
τ
[−τb− c,b]T . (29)

Furthermore, the crossing of the root is from the RHP to the
LHP if the intersection is located at the right of k0.

IV. σ -STABILITY AND FRAGILITY

In this section we propose two auxiliary results to deal
with the problems of σ -stability and fragility of a given
controller. These results will be useful in the design of a
controller that satisfies a given performance (exponential
decay rate) as well as some robustness against parametrical
uncertainties. To this end, let us first state the σ -stability
problem: Let σ ∈ R−, the σ -stability problem can be de-
scribed as the task of determining a controller k such that the
real part of the rightmost roots of the characteristic equation
(15) is located at the left of σ . Let Tσ denote the set of all k
such that (15) has at least one root on the vertical line of the
complex plane defined as Lσ := σ + jω for all ω ∈ R. This
vertical line is defined as the σ -axis. In order to introduce
similar results to those presented in Section III-B we have
the following:

Corollary 1: Let ω ∈Ω, and let τ ∈R+, σ ∈R− be fixed
values. Then, the set Tσ can be computed as:

Tσ = Tσ ∪Tσ ,0, (30)

with
Tσ ,0 =

{
k ∈ R2 |k = k(σ ,0)

}
, (31)

Tσ =
{

k ∈ R2 |k = k(σ ,ω)
}
. (32)

Consider now the fragility problem, which consists of com-
puting the maximum controller parameters deviation d of
a given stabilizing controller k̄ := [k̄p, k̄δ ]

T , such that the
closed-loop system remains stable, as long as the controller
parameters k satisfy the inequality:√

(kp− k̄p)2 +(kδ − k̄δ )2 < d. (33)

In order to address this problem, let k(ω) = [kp(ω),kδ (ω)]T

as given in Proposition 3. Bearing in mind this notation, we
have the following:

Proposition 7: Let k̄ be a stabilizing controller. Then, the
maximum parameter deviation d of k̄, such that the closed-
loop system remains stable, is given by:

d := min
{

d̃,
1√
2

∣∣k̄p + k̄δ + c
∣∣} , (34)

with d̃ defined as:

d̃ := min
ω∈Ω f

{ξ (ω)}, (35)

where Ω f denote the set of all roots of f (ω):

f (ω) :=
〈

k(ω)− k̄,
d

dω
k(ω)

〉
. (36)

V. ILLUSTRATIVE RESULTS

All results of this section were obtained by means of the
“SimPowerSystems” toolbox in the “Simulink” environment
of the software “Matlab”. The parameters used in the simu-
lation are summarized in Table I. The tests presented in this
section are designed to regulate the output voltage vo(t) to a
nominal value of Vo := 20. Recall that the control scheme has
the task to regulate the variations of the output voltage ṽo(t)
to zero in order to satisfy the following: vo(t)→ Vo. The
control law proposed for the achievement of this objectives
is given by:

u(t) =U + ũ(t), (37)

with:
ũ(t) := kpe(t)+ kδ e(t− τ), (38)

where the error signal is defined as:

e(t) := 0− ṽo(t) =Vo− vo(t), (39)

and the nominal value U can be obtained directly from (8).
Consider the controller’s delay value τ = 5× 10−5s for the

TABLE I
PARAMETERS OF THE SYSTEM

Symbol Value Unit
R 3 Ω

L 180×10−5 H
C 40×10−6 F
Vs 40 V
f 20×103 Hz

P−δ controller (11) along with the parameters given in Table
I. Figure 2, first depicts the delay-independent stability region



obtained directly from Proposition 1. Second, it illustrates the
stability region for the given fixed value τ obtained by means
of Proposition 4 and computed by applying Proposition 3.
Making use of these results, the P− δ controller is set as

Fig. 2. Stability Region for τ = 5×10−5s and Delay-Independent Stability
Region.

k = [50,1]T . Three different values of τ are proposed in order
to verify the independent stability condition. The results of
the regulation of vo(t) for this test are depicted in Fig. 3.

Fig. 3. Closed-Loop System Response Under Different Values of τ .

In order to show how the stability region for the fixed value
τ = 5×10−5 behaves, a large view of this region is depicted
in Fig. 4.

In the following, let us consider the stability index η

(number of roots in the RHP) for different regions delimited
by the stability crossing boundaries. To this end, Fig. 5
presents the results of applying Propositions 5 and 6, where
the colors “red”, “green”, “blue” and “black” stands for
Cp > 0, Cδ > 0, CpCδ > 0 and (Cp < 0)&(Cδ < 0) = ’true’,
respectively.

Fig. 4. Stability Region for τ = 5×10−5.

Fig. 5. Stability Index Analysis.

Finally, we apply the auxiliary results shown in Section
IV. First we use a σ -Stability Analysis varying σ from 0
to −4×103, the results are summarized in Fig. 6. From this
figure, we denote the finding of a stability region that ensures
that all roots of the characteristic equation of the closed-loop
system has real part σ <−4×103. In other words, that the
exponential decay rate of the closed-loop system response is
smaller than 4×103. Second, we test the fragility for three
different controllers, the results are summarized in Table II
and illustrated in Fig. 7.

TABLE II
FRAGILITY ANALYSIS

k Ω f do d f d
k1 {38110,63023,252843} 1.1431 1.6192 1.4319
k2 {60765,251703,314353} 15.574 3.7049 3.7049
k3 {120762,253594,31548} 23.3522 5.1322 5.1322



Fig. 6. σ -Stability Region.

Fig. 7. Fragility Analysis.

CONCLUDING REMARKS

A methodology for the design of a P-δ controller applied
to the stabilization of a buck DC/DC converter is presented.
In addition, the behavior of the roots of the characteristic
equation, as the controller gains are varied is analyzed. The
results go beyond the stabilization problem, particularly, the
closed-loop performance analysis via the solution to the σ -
stability problem and the study of controller fragility are
addressed. The design methodology can be applied and de-
veloped straightforwardly, showing that the presented results
are easy to implement.
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