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Abstract—This paper considers the optimal design of train-
ing sequences for channel estimation in large-scale multiple-input
multiple-output orthogonal frequency-division multiplexing sys-
tems. The application scenario of interest is when the number of
transmit antennas for the downlink (or the number of receive an-
tennas for the uplink) is large, but not large enough to benefit
the asymptotical optimality of using equipower training sequences
(e.g., due to practical constraints on deployment costs, space, and
antenna size). Under the criterion of minimizing the mean square
error of the channel estimate, the optimal design of training se-
quences for such systems poses a truly large-scale optimization
problem, to which existing optimization solvers are not applica-
ble. We develop a fast convex programming (FCP) procedure to
find its global optimal solution. In each iteration of the proposed
FCP procedure, a solution is found in a scalable and closed form.
The singularity and ill-conditionedness of the channel correlation
matrices are also exploited to improve the computation efficiency.
Furthermore, we also examine the design of reduced-length train-
ing sequences and develop a successive quadratic programming
procedure to find the solutions. Intensive simulation results are
provided to illustrate the performance of our methods.

Index Terms—Large-scale MIMO, OFDM, spatial correlation,
training sequences, reduced-length sequence, minimum mean
square error (MMSE), large-scale optimization, fast convex pro-
gramming, successive quadratic programming.

I. INTRODUCTION

MULTI-INPUT MULTI-OUTPUT (MIMO)-orthogonal
frequency division multiplexing (OFDM) is adopted in

many wireless standards thanks to its implementation flexibility
and robustness against multipath fading channels. Nevertheless,
new technologies are still required to meet the exponentially-
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growing demand for wireless data traffic. Recently, large-scale
(LS) MIMO configuration [1] has been proposed as one of the
key candidate technologies for the continuing evolution toward
beyond-4G and 5G cellular systems. In a nutshell, a large-scale
MIMO transceiver deploys a large number of antennas that are
placed in a two-dimensional (2D) planar array as opposed to
a one-dimensional (1D) linear array as in a traditional MIMO
setup. The chief benefit of 2D antenna arrangement is to reduce
the form factor of the antennas, hence making it more practical
[2]. For example, deploying 64 antennas at 5 GHz in an 8 × 8
planar array with a half-wavelength spacing would result in a
form factor of 0.25 m × 0.25 m, which is much smaller than
a linear array of 2 m wide would the antennas be placed in a
linear array. In addition to the small form factor advantage, the
large-scale MIMO setup allows the base station (BS) to trans-
mit/receive spatially-multiplexed signals to/from a large number
of user terminals. This is because with 2D antenna elements, dy-
namic and adaptive precoding/beamforming can be performed
jointly across all antennas. As a result, the base station can re-
alize more directed transmissions in the azimuth and elevation
domains simultaneously for a larger number of user terminals.

This paper is concerned with training sequence design for
channel state estimation (CSE) in a large-scale MIMO OFDM
system. CSE is necessary to perform precoding and beamform-
ing at the transmitter and coherent detection at the receiver.
This allows practical systems to operate close to the theoreti-
cal capacity [3]. Compared to single-input single-output (SISO)
systems, the problem of CSE in large-scale MIMO systems is
much more difficult because there is a much larger number of
correlated variables to be estimated (the number of variables is
proportional to the number of transmit-receive antenna pairs and
their associated channel delay spreads [4]). CSE for flat fading
MIMO systems has been extensively studied in the literature
either for small-scale systems (see e.g. [5]–[9] and references
therein) or massive MIMO systems with a few hundred trans-
mit/receive antennas (see e.g. [10]–[15]). For broadband wire-
less systems, which experience frequency-selective fading, it is
common to use OFDM so that the frequency-selective fading
channel is turned into parallel flat fading sub-channels. How-
ever, it is not efficient to estimate these equivalent large-scale
MIMO flat fading sub-channels separately because (i) they are
not independent but rather correlated in time, frequency and
space, and (ii) the total number of channel variables is too large.
In fact, even for small-scale MIMO-OFDM systems, the CSE
problem and solutions are not a simple extension of the tech-
niques developed for flat fading MIMO channels [16], [17].



Many channel state estimators proposed in the past for (small-
scale) MIMO-OFDM simplify the problem by ignoring the spa-
tial correlations among transceiver’s antennas [16], [18]. The
first estimator for spatially-correlated MIMO-OFDM channels
was developed in [17] but the proposed training sequence and
estimator are locally optimized at extreme SNR regimes only.
The globally-optimized training sequences and estimator were
thoroughly addressed in [19], [20] for all SNR regimes. The
CSE problem faced in large-scale MIMO-OFDM systems is a
highly-structured large-scale matrix problem, which cannot be
easily factorized for tractably-computational solutions. When-
ever the number of antennas is not more than 64 as in many
current and future systems [1], the CSE solutions for massive
MIMO systems (with several hundred antennas [10], [11], [13],
[21]) may not apply. It should be pointed out that spatial corre-
lations of MIMO-OFDM channels have been exploited in [22]
for the estimation of path delays.

The present paper adopts the minimum mean square error
(MMSE) criterion in optimizing the training sequences for CSE
of large-scale MIMO-OFDM systems. In connection to a similar
problem formulation in [19], [20] for small-scale MIMO-OFDM
systems, the MMSE-based CSE problem for large-scale MIMO-
OFDM systems at hand poses the following completely new
issues:

� The channel correlation matrices are singular and ill-
conditioned due to close antenna spacing [11], [17]. This
prevents the application of the matrix inversion lemma,
which is the main tool for formulating the training se-
quence design in tractable optimization.

� The semi-definite programming (SDP) based solution of
[19], [20] for small-scale MIMO-OFDM systems becomes
computationally prohibitive for large-scale MIMO-OFDM
systems due to large dimensions of training sequences.
Efficient procedures for solving large-scale SDP have not
been developed.

� Optimization for training sequences of reduced length is
practically relevant for large-scale MIMO-OFDM as it
leads to higher data throughput, but is a highly nonconvex
optimization problem, whose solution is not yet explored,
even for small-scale MIMO-OFDM systems.

The aim of the present paper is to resolve the aforementioned
issues of CSE for large-scale MIMO-OFDM systems. The main
contributions of the paper are elaborated in the following.

� Bypassing the need of matrix inverse (which does not exist)
or pseudo-inverse (which is ill-conditioned) of the channel
correlation matrices, we first obtain a convex optimization
formulation for the problem of MSE minimization. More-
over, the singularity and ill-conditionedness of the channel
correlation matrices are also exploited for this tractable
formulation. It also reveals that the number of antennas
to transmit the optimal training sequences does not excess
the maximal rank of transmission correlation matrices. In
fact this development is new even for small-scale MIMO-
OFDM systems.

� Since the resulting convex optimization problem is large-
scale, for which there is no computationally-feasible so-
lution procedure to date, we develop a scalable fast

convex programming (FCP) to find its global optimal solu-
tion. This development is new even from the optimization
viewpoint.

� When seeking training sequences of a reduced length,
the optimization problem is no longer convex but is still
large-scale. Nevertheless, we develop an efficient succes-
sive quadratic programming (SQP) for its computational
solution. Each iterative convex program admits a closed-
form solution so the iterative procedure is very efficient.
The full length of training sequences is LMt where L is
the delay spread and Mt is the number of antennas in
downlink transmission, which is large for large Mt . We
will show that a very good CSE can be obtained by op-
timizing the training sequences with the reduced length
of LMt/2.

The rest of the paper is organized as follows. Section II in-
troduces the large-scale MIMO-OFDM system model and for-
mulates the optimization problem of CSE under the MMSE
criterion. Section III shows that the considered optimization
problem can still be cast into a convex program, which is
however large-scale. Fast convex programming for solving this
large-scale convex program is developed in Section IV. Suc-
cessive quadratic programming for efficiently solving the large-
scale, highly nonconvex program of optimizing reduced-length
training sequences is given in Section V. Section VI presents
examples to illustrate the performance of our proposed methods.
Concluding remarks are given in Section VII.

Notation: Bold capital and lower-case letters denote matri-
ces and column vectors, respectively. The subscripts (·)T and
(·)H denote transpose and Hermitian transpose operations, re-
spectively. The symbol ⊗ is used for the Kronecker product of
two matrices and vec(A) denotes the vectorization operation
of matrix A. tr(·) and | · | stand for the trace and determinant
of a matrix, respectively. Accordingly, 〈A,B〉 = tr(AH B) and
A ⊗ B are the dot product and Kronecker product of matri-
ces A and B. A+ is pseudo-inverse of A. A � 0 (A � 0,
resp.) means A is Hermitian positive definite (semi-definite,
resp.), for which A1/2 is a matrix such that A1/2(A1/2)H = A,
while A1/2

+ is the unique Hermitian symmetric positive definite

matrix such that A1/2
+ A1/2

+ = A. In is the identity matrix of
dimension n × n. x+ = max{x, 0} for a scalar x. The expec-
tation operation is E{·}, while CN (0, σ2) denotes a zero-mean
circularly-symmetric complex Gaussian random variable with
variance σ2 . WN = e−j2π/N for an integer N . Furthermore,
[Aij ]i,j=0,1,...,N with matrices Aij means the matrix with block
entries Aij . Analogously, diag[Ai ]i=0,1,...,N means the matrix
with diagonal blocks Ai and zero off-diagonal blocks.

II. LARGE-SCALE MIMO-OFDM SYSTEM MODEL AND

TRAINING DESIGN

Consider a large-scale MIMO-OFDM system with Mt trans-
mit antennas, Mr receive antennas as depicted in Fig. 1, where
either Mt is large (e.g., up to 64) for downlink transmission
or Mr is large for an uplink receiver. The MIMO frequency-
selective fading channel can be described by the following



Fig. 1. A typical MIMO-OFDM system.

transfer matrix:

H(z) =
L−1∑

�=0

H�z
−� ,

where each stationary process H� ∈ CMr ×Mt represents the
gains of the �th MIMO path. It is noted that the matrix H� is
either very fat (when Mt is large) or very tall (when Mr is large).
Under the assumption of Rayleigh block fading, the elements
of H� are circularly symmetric complex Gaussian random vari-
ables that remain unchanged over the period of one OFDM
symbol.

Due to close antenna spacings in 2D planar array, large-scale
MIMO channels exhibit spatial correlations. The spatial corre-
lations of MIMO channels can be modeled as follows [23]–[25]:

H� = R1/2
R ,� HW ,� (R1/2

T ,� )
T , � = 0, 1, . . . , L − 1, (1)

where the deterministic Hermitian-symmetric matrix 0 �
RT ,� ∈ CMt ×Mt models the correlation among the transmit
antenna elements, which is typically singular [11], [17] with

rank(RT ,�) = τ�, (2)

which is less than Mt , while 0 � RR ,� = R1/2
R ,�R

1/2
R ,� ∈

CMr ×Mr captures the correlation among the antenna el-
ements at the receiver. The matrix HW ,� ∈ CMr ×Mt is
a stationary process, whose elements are independent and
identical distributed circularly symmetric complex Gaus-
sian random variables with unit variance. Define h =
(vecT (H0), vecT (H1), . . . , vecT (HL−1))T ∈ CLMt Mr . Then
the correlation matrix of h is

Rh = E[hhH ] = diag[RT ,� ⊗ RR ,� ]�=0,...,L−1 . (3)

Suppose the MIMO-OFDM system operates with M = 2M

sub-carriers. Each information block of length M goes through
an OFDM modulator to form an OFDM block and is transmit-
ted via one transmit antenna. The OFDM cyclic prefix (CP)
length is chosen to be longer than the channel order, L − 1,
to avoid inter-block interference (IBI). Specifically, sequences
x(j) ∈ CMt , j = 0, 1, . . . ,M − 1 are transmitted from Mt an-
tennas on the jth sub-carrier. Inside just one OFDM block,

N = 2N << M training symbols are inserted on the t0 th,
t1 th,..., tN −1 th sub-carriers for channel estimation. Mathemati-
cally, the training sequences are inserted as

s(tk ) = x(tk ) ∈ CMt , k = 0, 1, . . . , N − 1.

The channel transfer function corresponding to the tk th sub-
channel is

Hf (tk ) :=
L−1∑

�=0

H�W
�tk

M , k = 0, 1, . . . , N − 1. (4)

Thus, the normalized input-output equation for each pilot sub-
carrier is

r(tk ) =
√

ρ

Mt
Hf (tk )s(tk ) + n(tk ), k = 0, 1, . . . , N − 1,

(5)
where ρ is the average training signal-to-noise-ratio (SNR)
at the receiver, r(tk ) = (r0(tk ), . . . , rMr −1(tk ))T ∈
CMr is the tk th received signal vector, s(tk ) =
(s0(tk ), . . . , sMt −1(tk ))T ∈ CMt is the training vector,
and n(tk ) = (n0(tk ), . . . , nMr −1(tk ))T represents additive
white Gaussian noise (AGWN), whose elements are i.i.d
CN (0, 1) random variables. It is pointed out that, in practice,
ρ depends on the effects of path loss and shadowing (or
shadow fading). The path loss is a function of distance between
the transmitter and receiver, while shadowing represents the
variation of received signal power due to blockages from
objects in the signal path [26]. The effect of shadow fading
differs from multipath fading captured by (4) in an important
way: the former occurs at a much slower time-scale compared
to multipath fading (the duration of a shadow fade could last
for multiple seconds or minutes) [27]. As such, it is common in
the design of estimation and detection algorithms for wireless
communication systems to treat ρ as a constant. Furthermore,
most modern communication systems exercise power control
schemes that adapt to the slow variation of shadowing so that
the quantity ρ is maintained at a certain level at the receiver
[26], [27].

From Equation (5), we can write the received signal in the
training phase as

r(tk ) =
√

ρ

Mt
M(s(tk ))h + n(tk ), k = 0, 1, . . . , N − 1,

(6)
where M(s(tk )) is defined as

M(s(tk )) = [Wtk ·0
M sT (tk ) Wtk ·1

M sT (tk )

· · · W
tk (L−1)
M sT (tk )] ⊗ IMr

. (7)

It can be seen from (5) that there are MrN measurements for
the estimation of LMtMr unknown parameters, which are the
entries of matrices H� ∈ CMr ×Mt , � = 0, 1, . . . , L − 1. When
all the entries of H� are independent, to make the estimation
problem meaningful, it is widely known that the number of
measurements is not less than the number of unknowns [6], i.e.,

N ≥ LMt, (8)



which is large whenever Mt is large. The above condition on the
number of sub-carriers necessary for OFDM channel estimation
is also stated in [16], [17], [28]. We shall see in the next section
that N = LMt is sufficient. Moreover, as the entries of H�

are correlated, we will also see that N = LMt/2 when Mt is
large, or N = 2L when Mr is large, can still provide good CSE
quality, hence improving the efficiency of the training phase.

Define the following training symbol matrix

S = [s(t0) s(t1) . . . s(tN −1)]
T ∈ CN ×Mt . (9)

Then (6) can be compactly represented as

r =
√

ρ

Mt
M(S)h + n, (10)

where

r =

⎛

⎜⎜⎜⎝

r(t0)
r(t1)
. . .

r(tN −1)

⎞

⎟⎟⎟⎠ ∈ CN Mr, n =

⎛

⎜⎜⎜⎝

n(t0)
n(t1)
. . .

n(tN −1)

⎞

⎟⎟⎟⎠ ∈ CN Mr,

M(S) =

⎡

⎢⎢⎢⎣

M(s(t0))
M(s(t1))

. . .

M(s(tN −1))

⎤

⎥⎥⎥⎦

= F(S) ⊗ IMr
∈ CN Mr ×LMt Mr ,

F(S) =
[
F0S F1S . . . FL−1S

] ∈ CN ×LMt

and

F� = diag{Wtk �
M }k=0,1,...,N−1 ,

� = 0, 1, . . . , L − 1, (11)

MH (S)M(S) = [(SH FH
� FmS) ⊗ IMr

]�,m=0,1,...,L−1

= [(SH Fm−�S) ⊗ IMr
]�,m=0,1,...,L−1 .

The CSE problem is to obtain an estimator ĥ for h from (10)
with a known (deterministic) training signal S. Since all the
random vectors r,h and n in Equation (10) are Gaussian with
zero mean, ĥ is a Wiener filter (or MMSE estimator), which is
the mean of a conditional distribution of h [29]:

ĥ =
√

ρ

Mt
RhMH (S)

(
ρ

Mt
M(S)RhMH (S) + IN Mr

)−1

r.

(12)
Obviously, the error e = h − ĥ is a Gaussian random variable
with zero mean and covariance

Re := Rh − ρ

Mt
RhMH (S)

(
ρ

Mt
M(S)RhMH (S)

+ IN Mr

)−1

M(S)Rh . (13)

In general, training design is to find the training matrix
S ∈ CN ×Mt to obtain the conditional mean ĥ of the channel
state h (which is considered as time-varying stationary process)

under some criterion and subject to the following training power
constraint:

tr{SH S} = Pt. (14)

The commonly-used estimation criteria are minimum least
square error [18], minimum mean squared error E{||e||2} =
tr(Re) [17], [19], [20] or minimum error-entropy H(e)
[5]–[7], [30]. The crucial assumption in all these works is
the non-singularity of the covariance matrix Rh , under which
the Matrix Inversion Lemma can be applied to simplify Re

in (13) to

Re =
(
R−1

h +
ρ

Mt
MH (S)M(S)

)−1

. (15)

For singular Rh as the case in this paper, as pointed out in [20],
[30] the Matrix Inverse Lemma is no longer applicable, i.e.,
one cannot simply replace R−1

h in (15) by its pseudo-inverse
R+

h as done in [7] for MIMO channel estimation and [17] for
MIMO-OFDM channel estimation. There are also other positive
but small eigenvalues of Rh that make (15) ill-conditioned.

To overcome these issues, we first derive Re in a tractable
form that does not involve either R−1

h (which does not exist) or
R+

h (which is often ill-conditioned) and is always well-posed.
This is done by using the matrix inverse lemma [31] as follows:

Re = R1/2
h

(
IτT Mr

− ρ

Mt

(
R1/2

h

)H

MH (S)

×
(

ρ

Mt
M(S)R1/2

h

(
R1/2

h

)H

MH (S) + IN Mr

)−1

× M(S)R1/2
h

)(
R1/2

h

)H

= R1/2
h

(
IτT Mr

+
ρ

Mt

(
R1/2

h

)H

MH (S)M(S)R1/2
h

)−1

×
(
R1/2

h

)H

, (16)

where τT =
∑L−1

�=0 τ� and R1/2
h = diag[R1/2

T ,� ⊗
R1/2

R ,�+]�=0,...,L−1 with

R1/2
T ,� ∈ CMt ×τ� . (17)

From now on, we consider the following optimization
problem:

min
S∈CN ×M t

tr
(
R1/2

h

(
IτT Mr

+
ρ

Mt

(
R1/2

h

)H

MH (S)M(S)

×R1/2
h

)−1 (
R1/2

h

)H
)

s.t. tr{SH S} = Pt. (18)

One can see that the singularity of the correlation matrices RT ,�

has been exploited in dimension reduction for the optimiza-
tion formulation. In general, the optimization problem (18) is a
difficult nonconvex problem because of the Kronecker product
structures of matrices Rh and M(S). In the next section we



show that (18) can still be recast as a convex optimization prob-
lem. However, unlike small-scale convex optimization prob-
lems considered in [19], [20], this convex optimization problem
for large-scale MIMO-OFDM systems is computationally pro-
hibitive for existing solvers. Therefore, Section IV develops a
very fast computation procedure for its solution.

III. OPTIMIZED TRAINING SEQUENCE BY LARGE-SCALE

CONVEX OPTIMIZATION

Inside an OFDM block, N = 2N << M = 2M training sym-
bols are inserted on the 0th, M/N th,..., (N − 1)M/N th sub-
carriers for channel estimation. Mathematically, the training
symbols are inserted as

s(k) = x(kM/N) ∈ CMt , k = 0, 1, . . . , N − 1.

The kM/N th sub-channel in (4) is

Hf (kM/N) := H
(
W

kM/N
M

)

=
L−1∑

�=0

H�W
�kM/N
M

=
L−1∑

�=0

H�W
�k
N ,

k = 0, 1, . . . , N − 1. (19)

Then M(s(kM/N)) in (6) is

M(s(kM/N)) =
[
Wk ·0

N sT (k) Wk ·1
N sT (k) · · ·

W
k(L−1)
N sT (k)

]
⊗ IMr

. (20)

The matrices in (11) are simplified to

F(S) = [F0S F1S . . . FL−1S] ,

F� = diag{Wk�
N }k=0,1,...,N−1 ,

� = 0, 1, . . . , L − 1, (21)

MH (S)M(S) = [(SH FH
� FmS) ⊗ IMr

]�,m=0,1,...,L−1 .

As pointed out before, the Kronecker product structures of ma-
trices Rh and M(S), which are due to the spatially correlated
channels and OFDM modulation, render the difficulty in solving
the optimization problem in (18). To overcome this challenge,
we shall make use of the following lemmas on the inequality of
a positive definite matrix and orthogonality of the roots of unity.

Lemma 1: [31] For a positive definite block matrix X =
[Aij ]i,j=1,2,...,L with matrix entries Aij and its inverse X−1

with matrix entries [X−1 ]i,j=1,2,...,L , the following matrix in-
equality holds true

[X−1 ]i,i � A−1
ii , i = 1, . . . , L, (22)

with the equality if and only if the off-diagonal entriesAij , i 
= j
are zeros, i.e., X = diag[Aii ]i=1,2,...,L .

Lemma 2: [32] It is true that WkN +i
N = Wi

N and

1
N

N −1∑

k=0

Wk�
N =

{
1, for � ≡ 0 (mod N),

0, otherwise.

Using Lemma 1, the following theorem shows that N = LMt

is the optimal number of training symbols since the estimation
quality under the same power constraint is identical to that with
using training sequences of longer lengths.

Theorem 1: Suppose that Q ∈ CN ×Mt is composed of Mt

orthonormal columns qi ∈ CN , i = 1, . . . , Mt such that

QH FαQ = [qH
i Fαqj ]i,j=1,2,...,Mt

= 0Mt

for 1 ≤ α ≤ L − 1. (23)

Then the optimization problem in (18) in S ∈ CN ×Mt is
equivalent to the following convex optimization problem in
X ∈ CMt ×Mt :

L	 = min
0�X∈CM t ×M t

L−1∑

�=0

tr
[
R1/2

�

(
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� X

× R1/2
T ,�

)
⊗ RR ,�

)−1
R1/2H

�

]
s.t. tr{X} = Pt

(24)

for R1/2
� = R1/2

T ,� ⊗ R1/2
R ,�+ , � = 0, 1, . . . ., L − 1. The optimal

solution Sopt of (18) is obtained from the optimal solution Xopt
of (24) as

Sopt =
[
QX1/2

opt 0N ×(Mt −τo p t )

]
(25)

where τopt = rank(Xopt) and X1/2
opt ∈ CMt ×τo p t .

Proof: For notational simplicity, we denote the objective
function of (18) by I(S). By Lemma 1, the following opti-
mization problem gives a lower bound for (18):

min
S∈CN ×M t

L−1∑

�=0

tr
[
R1/2

�

(
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� SH SR1/2
T ,�

)

⊗ RR ,�

)−1

R1/2H
�

⎤

⎦ s.t. tr{SH S} = Pt. (26)

Hence

min of Equation (18) ≥ min of Equation (26)

= min of Equation (24), (27)

where the equality in (27) follows from the variable change
0 � X = SH S ∈ CMt ×Mt in (26), which is possible thanks to
N ≥ Mt .



On the other hand, for Sopt defined by (25), it can be seen
that

min of Equation (18) ≤ I(Sopt)

=
L−1∑

�=0

tr
[
R1/2

�

(
Iτ� Mr

+
ρ

Mt

[
R1/2H

T ,� Xopt

× R1/2
T ,�

]
⊗ RR ,�

)−1
R1/2H

�

]

= min of Equation (24) (28)

which together with (27) yield

min of Equation (18) = min of Equation(24).

Thus, the proof of Theorem 1 is complete. �
It is interesting to observe from (25) that only τopt out of Mt

antennas need to send the training pilots for channel estimation.
Furthermore, the number τopt can be effectively taken as the
number of the eigenvalues ofXopt that are large than a threshold.

Using Lemma 2, we now provide a construction of ma-
trix Q that is composed of Mt orthornormal columns qi , i =
1, 2, . . . ,Mt satisfying (23), namely

qH
i Fαqj = 0, for i, j = 1, 2, . . . , Mt, 1 ≤ α ≤ L − 1.

(29)
Define

K = N/Mt�, (30)

i.e., K is the maximum integer not exceeding N/Mt . Then take

q1 = (q1(0), q1(2), . . . , q1(N − 1))T ,

|q1(i)| = 1/
√

N, i = 0, 1, . . . , N − 1,

qi(k) = q1(k)WK (i−1)k
N ,

k = 0, 1, . . . , N − 1; i = 2, . . . , Mt (31)

so that ||qi || = 1, i = 1, . . . ,Mt . According to Lemma 2

qH
i Fαqj =

N −1∑

k=0

|q1(k)|2W−[K (i−j )−α ]k
N

=
1
N

N −1∑

k=0

W
−[K (i−j )−α ]k
N

=

{
1, for K(i − j) ≡ α (mod N),

0, otherwise.

For N satisfying (8), K(i − j) 
= α for all 1 ≤ i, j ≤ Mt, 1 ≤
α ≤ L − 1 and |K(i − j)| < N . Therefore

K(i − j) 
= α ( mod N) ∀ 1 ≤ i, j ≤ Mt ;

α = 1, 2, . . . , L − 1 (32)

and (29) is verified. Moreover, |K(i − j)| < N particularly
implies that K(i − j) 
= 0 ( mod N). Thus from Lemma 2

one has

qH
i qj =

N −1∑

k=0

W
K (j−i)k
N = 0 (33)

whenever i 
= j. That is, the matrix Q consisting of columns
qi , i = 1, 2, . . . ,Mt , satisfies the orthogonality condition:

QH Q = [qH
i qj ]i,j=1,2,...,Mt

= IMt
. (34)

In summary, we have shown that for N satisfying (8), a matrix
Q satisfying the condition of Theorem 1 exists, making the
nonconvex optimization problem (18) equivalent to the convex
optimization problem (24).

One can recognize that (24) is convex since it is in fact the
following SDP

min 0�X∈CM t ×M t ,
Z� ∈C (M t M r )×(M t M r )

L−1∑

�=0

tr(Z�) s.t. tr{X} = Pt,

⎡

⎢⎣
Z� R1/2

�

R1/2H
� Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� XR1/2
T ,�

)
⊗ RR ,�

⎤

⎥⎦ � 0,

� = 0, . . . , L − 1, (35)

where Z� are slack variables.
It is pointed out that the SDP in (35) is equivalent to the

SDP in [20, (32)/(34)] when RT ,� is nonsingular. However,
unlike [20], solving the SDP (35) with existing solvers is not
computationally feasible because of the large dimensions of
the matrix variables Z� ∈ C(Mt Mr )×(Mr Mr ) and X ∈ CMt ×Mt .
The next section develops a novel fast computational procedure
to find the solution of (24) for the case of “full length” training
sequence, i.e., when N satisfies (8).

IV. FAST CONVEX PROGRAMMING FOR OPTIMIZING

FULL-LENGTH TRAINING SEQUENCES

First, make the following singular value decompositions
(SVDs)

RR ,� = V�Υ�VH
� , (36)

where Υ� = diag(γ�1 , . . . , γ�Mr
), � = 0, 1, . . . , L − 1. It can

be easily verified that problem (24) is equivalently simplified to
the following semi-definite program:

min0�X∈CM t ×M t

L−1∑

�=0

tr
[
R̃1/2

�

(
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� XR1/2
T ,�

)

⊗ Υ�

)−1

R̃1/2H
�

]
s.t. tr{X} = Pt,

(37)



for R̃� = RT ,� ⊗ Υ� . We will approximate this semi-definite
program by

min0�X∈CM t ×M t

L−1∑

�=0

tr
[
R̃1/2

�

(
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� X(ε)R1/2
T ,�

)

⊗ Υ�

)−1

R̃1/2H
�

]
s.t. tr{X} = Pt,

(38)

where X(ε) = X + εIMt
� 0 whenever X � 0 and ε > 0. It is

obvious that the optimal solution of (38) will tend to that of
(37). Moreover, the objective function in (38) monotonically
increases to that in (37) as ε → 0+.

Now, define

f�(X) = tr

[
R̃1/2

�

(
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� X(ε)R1/2
T ,�

)
⊗ Υ�

)−1

× R̃1/2H
�

]
.

Suppose X(κ) is feasible for (38). It follows from Lemma 3 in
the Appendix that

f�(X) ≤ f
(κ)
� (X), (39)

for

f
(κ)
� (X) := f�(X(κ)) +

ρ

Mt
tr
{[

Iτ� Mr
+

ρ

Mt

(
R1/2H

T ,�

× X(κ)(ε)R1/2
T ,�

)
⊗ Υ�

]−1
R̃1/2H

� R̃1/2
�

[
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� X(κ)(ε)R1/2
T ,�

)
⊗ Υ�

]−1 ((
R1/2H

T ,� (X(κ)(ε)

× X−1(ε)X(κ)(ε) − X(κ)(ε))R1/2
T ,�

)
⊗ Υ�

)}
. (40)

By partitioning
[
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� X(κ)(ε)R1/2
T ,�

)
⊗ Υ�

]−1

R̃1/2H
� R̃1/2

�

×
[
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� X(κ)(ε)R1/2
T ,�

)
⊗ Υ�

]−1

= [A(�,κ)
mn ]m=1,...,τ� ;n=1,...,τ�

, A(�,κ)
mn ∈ CMr ×Mr

one has

tr

{[
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� X(κ)(ε)R1/2
T ,�

)
⊗ Υ�

]−1

R̃1/2H
�

× R̃1/2
�

[
Iτ� Mr

+
ρ

Mt

(
R1/2H

T ,� X(κ)(ε)R1/2
T ,�

)
⊗ Υ�

]−1

×
((

R1/2H
T ,� X(κ)(ε)X−1(ε)X(κ)(ε)R1/2

T ,�

)
⊗ Υ�

)}

= tr{X(κ)(ε)R1/2
T ,� A

(�,κ)R1/2H
T ,� X(κ)(ε)X−1(ε)}

for A(�,κ) = [tr{A(�,κ)
mn Υ�}]m=1,...,τ� ;n=1,...,τ�

.

Consider

min0≺X∈CM t ×M t

L−1∑

�=0

f
(κ)
� (X) s.t. tr{X} = Pt, (41)

which is the same as

min0�X∈CM t ×M t tr{X(κ)(ε)

(
L−1∑

�=0

R1/2
T ,�A(�,κ)R1/2H

T ,�

)

× X(κ)(ε)X−1(ε)}
s.t. tr{X} = Pt. (42)

Under the following SVD

X(κ)(ε)

(
L−1∑

�=0

R1/2
T ,�A(�,κ)R1/2H

T ,�

)
X(κ)(ε) =

U(κ)diag(α1 , . . . , αMt
)(U(κ))H , (43)

the optimal solution X(κ+1) of (41)/(42) is given in a closed
form as follows:

X(κ+1) = U(κ)diag

((
(Pt + kε)

√
α1∑Mt

i=1
√

αi

− ε

)+

, . . . ,

(
(Pt + kε)√αMt∑Mt

i=1
√

αi

− ε

)+)
(U(κ))H , (44)

where k is the rank of

X(κ)(ε)

(
L−1∑

�=0

R1/2
T ,�A(�,κ)R1/2H

T ,�

)
X(κ)(ε).

As X(κ) is also feasible for (41) and X(κ+1) is the optimal
solution of (41), it is true that

L−1∑

�=0

f
(κ)
� (X(κ+1)) ≤

L−1∑

�=0

f
(κ)
� (X(κ))

which together with (39) yield

L−1∑

�=0

f�(X(κ+1)) ≤
L−1∑

�=0

f
(κ)
� (X(κ+1))

≤
L−1∑

�=0

f
(κ)
� (X(κ))

=
L−1∑

�=0

f�(X(κ)),

i.e., X(κ+1) is a better feasible point than X(κ) for (38) as far as
X(κ+1) 
= X(κ) . If X(κ+1) = X(κ) then it is obvious that X(κ)

is the optimal solution of (41) and thus is the KKT point for
(41). It can be easily checked that any KKT point for (41) is
also a KKT point for (38).

The above analysis shows that {X(κ)} is a sequence of im-
proved solutions of (38), which converges to the KKT point
[33]. Since (38) is convex, such KKT point is its optimal solu-
tion. Thus we have shown that the sequence {X(κ)} converges



Algorithm 1: Fast Convex Programming (FCP) for Opti-
mizing Full-Length Training Sequences.

1: Construct qi , i = 1, . . . , Mt by (31) and form
Q = (q1 , . . . ,qMt

);
2: Initialize κ := 0 and X(0) feasible to (38).
3: repeat
4: Compute X(κ+1) by (43), (44).
5: Set κ := κ + 1.
6: until (

∑L−1
�=0 f�(X(κ)) −∑L−1

�=0 f�(X(κ+1)))/
∑L−1

�=0 f�(X(κ)) ≤ εtol .
7: Accept X = X(κ) and S = QX1/2H and calculate the

performance metric by
∑L−1

�=0 f�(X) in (24).

to the optimal solution of the convex optimization problem
(38). The pseudo-code for this iterative process is provided by
Algorithm 1. The following Proposition summarizes the main
result.

Proposition 1: Under any computational tolerance εtol > 0,
Algorithm 1 will terminate after finitely many iterations, yield-
ing the global optimal solution of the large-scale optimization
problem (38).

Although the global convergence of Algorithm 1 is guaran-
teed for any initial point X(0) that is feasible to (24), it is also
important to initialize Algorithm 1 from a good point to further
reduce the computation effort. To this end, we now develop a
suboptimal strategy for solution of (24), which is faster than
Algorithm 1 but performs optimally only at the following spe-
cial case of the transmit correlation matrix1:

RT ,� = U0Λ�UH
0 , � = 0, 1, . . . , L − 1, (45)

where Λ� = diag[λ�i ]i=1,...,Mt
.

Under SVD (36), instead of (38), we consider another equiv-
alent semi-definite formulation

min0�X∈CM t ×M t

L−1∑

�=0

tr
[
R̃1/2

�+

(
IMt Mr

+
ρ

Mt

(
R1/2

T ,�+XR1/2
T ,�+

)

⊗ Υ�

)−1

R̃1/2
�+

]
s.t. tr{X} = Pt,

(46)

with R̃1/2
�+ = R1/2

T ,�+ ⊗ Υ1/2
� , which can be written as

min0�X̃∈CM t ×M t

L−1∑

�=0

(IMt
⊗ Λ1/2

� )
(
IMt Mr

+
ρ

Mt
(Λ1/2

� X̃Λ1/2
� )

⊗ Υ�

)−1

(IMt
⊗ Λ1/2

� ) s.t. tr{X̃} = Pt, (47)

because X̃opt = UH
0 XoptU0 for the optimal solutions X̃opt

and Xopt of (47) and (46).
With the optimal solution X̃opt of (47), it is true that

X(0) = U0X̃optUH
0 (48)

1It is pointed out that such a special case has been addressed in [17] for
extreme SNR regimes of small-scale MIMO systems only.

is feasible to (38) and can be used as an initial point for the
implementation of Algorithm 1.

It follows from Lemma 1 that for any positive definite matrix
X̃, one has

tr

[(
IMt

⊗ Λ1/2
�

)(
IMt Mr

+
ρ

Mt

(
Λ1/2

� X̃Λ1/2
�

)
⊗ Υ�

)−1

×
(
IMt

⊗ Λ1/2
�

)]

≥ tr
[(

IMt
⊗ Λ1/2

�

)
(IMt Mr

+
ρ

Mt
diag[X̃(i, i)Λ�(i, i)]i=1,2,...,Mt

⊗ Υ�)−1

×
(
IMt

⊗ Λ1/2
�

)]
.

Thus the optimal solution of (47) with only one constraint
tr{X̃} = Pt must be in the diagonal form:

X̃ = diag(y1 , y2 , . . . , yMt
).

This means that the matrix optimization problem (47) in the
variable X̃ is equivalent to the following vector optimization
problem in y = (y1 , y2 , . . . , yMt

)T ∈ RMt :

minyi ≥0,i=1,2,...,Mt

Mt∑

i=1

fi(yi) s.t.
Mt∑

i=1

yi = Pt, (49)

where

fi(yi) =
L−1∑

�=0

Mr∑

j=1

λ�i

(
1 +

ρ

Mt
λ�iγ�j yi

)−1

. (50)

Although being convex, (49) does not admit a closed-form
optimal solution. Applying existing convex solvers for (49) is
still time-consuming for large Mt . In the remainder of this sec-
tion we will develop a path-following procedure of extremely
low computational complexity for the optimal solution of (49).

Using the inequality

(1 + x)−1 ≤ (1 + x̄)−1 + (1 + x̄)−2 x̄2(1/x − 1/x̄)

∀ x > 0, x̄ > 0

one has

fi(yi) ≤ f
(κ)
i (yi)

:= fi

(
y

(κ)
i

)
+ α

(κ)
i

(
1/yi − 1/y

(κ)
i

)

∀ yi > 0, y
(κ)
i > 0

and fi

(
y

(κ)
i

)
= f

(κ)
i

(
y

(κ)
i

)
for

α
(κ)
i :=

L∑

�=0

Mr∑

j=1

λ�i

(
(ρ/Mt)λ�iγ�j y

(κ)
i

(1 + (ρ/Mt)λ�iγ�j y
(κ)
i )

)2

× 1
(ρ/Mt)λ�iγ�j

(51)



Algorithm 2: Faster Convex Programming (Faster CP) for
Suboptimal Full-Length Training Sequences.

1: Initialize κ := 0 and y
(κ)
i = Pt/Mt , i = 1, . . . ,Mt .

2: repeat
3: Compute α

(κ)
i , i = 1, . . . , Mt by (51) and then

y
(κ+1)
i , i = 1, . . . ,Mt by (53). Set

y(κ+1) = (y(κ+1)
1 , . . . , y

(κ+1)
Mt

)T .
4: Set κ := κ + 1.
5: until (

∑Mt

i=1 fi(y
(κ+1)
i ) −∑Mt

i=1 fi(y
(κ)
i ))/

∑Mt

i=1 fi(y
(κ)
i ) ≤ εtol .

6: Accept X̃opt = diag{y(κ)
1 , . . . , y

(κ)
Mt

} and then X(0)

by (48).

Therefore, at the κ-th iteration we solve the following majorant
minimization of (49)

minyi ≥0,i=1,2,...,Mt

Mt∑

i=1

f
(κ)
i (yi) s.t.

Mt∑

i=1

yi = Pt, (52)

which admits a closed-form solution:

y
(κ+1)
i =

Pt

√
α

(κ)
i

∑Mt

j=1

√
α

(κ)
j

. (53)

The following proposition summarizes the above result.
Proposition 2: Under any computational tolerance εtol > 0,

Algorithm 2 will terminate after finitely many iterations, yield-
ing the global optimal solution of the optimization problem
(47), which results in a feasible solution (48) of the large-scale
optimization problem (24).

Remark: It can be seen from (50) that the rank of the opti-
mal solution X̃opt of (47) is no more than τmax , which is the
maximum rank of RT ,� , � = 0, . . . , L − 1. Thus under the spe-
cial structure (45), not more than τmax out of Mt antennas are
needed to send the optimal training sequences.

V. SUCCESSIVE QUADRATIC PROGRAMMING FOR NONCONVEX

OPTIMIZATION OF REDUCED-LENGTH TRAINING SEQUENCES

For the case that the length of the training sequence is short
such that N < LMt , the convex optimization problem (24) is
only a lower bound minimization of the nonconvex optimization
problem (18). Consequently, FCP developed in the previous
section does not provide an optimal solution. In this section we
develop a successive quadratic programming (SQP) for solving
(18) for this case, which, by (13), is equivalent to the following
optimization problem:

max
S∈CN ×M t

f(S) s.t. (14), (54)

where

f(S) = tr

[
RhMH (S)

(
ρ

Mt
M(S)RhMH (S) + IN Mr

)−1

× M(S)Rh

]
.

At any S(κ) satisfying the power constraint (14), by using
Lemma 4, one has

f(S) ≥ f (κ)(S)

:= 2�{tr(LH (S(κ))M(S))} − ρ

Mt
tr(Φ(S(κ))

×M(S)RhMH (S)) − tr(Φ(S(κ))),

where

L(S(κ)) =
(

ρ

Mt
M(S(κ))RhMH (S(κ)) + IN Mr

)−1

×M(S(κ))R2
h ,

Φ(S(κ)) =
(

ρ

Mt
M(S(κ))RhMH (S(κ)) + IN Mr

)−1

×M(S(κ))R2
hMH (S(κ))

×
(

ρ

Mt
M(S(κ))RhMH (S(κ)) + IN Mr

)−1

At the κ-th iteration, the following convex quadratic optimiza-
tion is solved to generate S(κ+1)

max
S∈CN ×M t

[
2�{tr(LH (S(κ))M(S))} − ρ

Mt
tr(Φ(S(κ))

× M(S)RhMH (S))
]

s.t. (14). (55)

where, by (11),

M(S)RhMH (S)) =
L−1∑

�=0

(F�SRT ,�SH FH
� ) ⊗ RR ,� .

Now, partition Φ(S(κ)) into N 2 blocks of size Mr × Mr ,

Φ(S(κ)) = [Φi,j (S(κ))]i=1,...,N ;j=1,...,N ,

Φi,j (S(κ)) ∈ CMr ×Mr ,

and then represent

x = vec(S), xn+(t−1)N = S(n, t),

1 ≤ n ≤ N, 1 ≤ t ≤ Mt.

Furthermore, let In,t ∈ RN ×Mt be a matrix with all zero entries
except In,t(n, t) = 1 and define In+(t−1)N := In,t . Then define
b ∈ CN Mt such that

b∗
n+(t−1)N = tr(LH (S(κ))M(It,n )), 1 ≤ n≤ N, 1 ≤ t ≤ Mt,



Algorithm 3: Successive Quadratic Programming (SQP)
for Nonconvex Optimization of Reduced-Length Training
sequences.

1: Initialize κ := 0 and X(0) as a feasible point for (18)
2: repeat
3: Compute xopt by (57) and X(κ+1) by matricization

of xopt .
4: Set κ := κ + 1.
5: until |f(S(κ+1)) − f(S(κ)))/f(S(κ))| ≤ εtol for some

tolerance εtol .
6: Accept S = S(κ) and f(S(κ)) as the performance.

and 0 � A ∈ CN Mt ×N Mt such that, for 1 ≤ n′ ≤ N , 1 ≤ n ≤
N , 1 ≤ t ≤ Mt , 1 ≤ t′ ≤ Mt ,

A(n′ + (t′ − 1)N,n + (t − 1)N)

= tr

(
Φ(S(κ))

(
L−1∑

�=0

(F�In+(t−1)N RT ,�IT
n ′+(t ′−1)N FH

� )

⊗ RR ,�

))

=
L−1∑

�=0

W
(n−n ′)�
N RT ,�(t, t′)tr(Φn ′,n (S(κ))RR ,�).

It follows that

tr(LH (S(κ))M(S)) = bH x,

tr(Φ(S(κ))M(S)RhMH (S)) = xH Ax.

Thus, problem (55) is in the form

max
x∈CN M t

[
2�{bH x} − ρ

Mt
xH Ax

]
s.t. ||x||2 = Pt,

(56)
which admits the optimal solution in a closed form:

xopt = (A + μIN Mt
)−1b, (57)

where μ = 0 if ||A−1b||2 ≤ Pt , otherwise μ > 0 such that

||(A + μIN Mt
)−1b||2 = Pt. (58)

The value of μ can be easily found by the following golden
search.

Golden search: Start from μmin = 0 and μmax = ||b||/√Pt

and μ = (μmin + μmax)/2. If ||(A + μIN Mt
)−1b||2 < Pt re-

set μmax = μ, otherwise reset μmin = μ. Continue search till
||(A + μIN Mt

)−1b||2 = Pt .
Finally, S(κ+1) can be recovered from xopt , for which

f(S(κ+1)) ≤ f(S(κ)), (59)

i.e., the objective in (18) is decreasing.
Proposition 3: Algorithm 3 converges to a local solution of

the nonconvex optimization problem (18), which satisfies the
KKT condition.

Proof: It follows from (59) that the sequence {S(κ) } is a 
sequence of improved solutions of (18), which either terminates 
or converges to point S̄ to satisfy the KKT condition for the con-
vex optimization problem (55) (with setting S(κ) = S̄), which is 
also the KKT condition for the nonconvex optimization problem

(18) [33]. �
It is useful to initialize Algorithm 3 from a good feasible

point X(0) , which can be found through the following con-
vex relaxation for (18). For N = L/2�Mt < LMt , the con-
vex optimization problem (24) is only an upper bound of the
nonconvex optimization problem (18). The value of K de-
fined by (30) is K = L/2�, which means L − 2K = 0 if L
is even and L − 2K = 1 if L is odd. Therefore, K ≤ L − 1 and
2K > L − 1 for L even but but K ≤ L − 1 and 2K = L − 1
for L odd. Then

qH
i Fαqj = 0, for i, j = 1, 2, . . . ,Mt,

α ∈ {1, 2, . . . , L − 1}\{K, (L − 2K)2K} (60)

and

qH
i FK qj =

⎧
⎪⎨

⎪⎩

1, for |i − j| = 1 or

|i − j| = 2(L − 2K)

0, otherwise

(61)

qH
i F(L−2K )2K qj =

{
1, for |i − j| = L − 2K

0, otherwise.
(62)

Moreover, |K(i − j)| < N particularly implies K(i − j) 
= 0
(mod N). Thus (33) is verified by Lemma 2, which means
{qi}Mt

i=1 are orthogonal and Q is full-rank. This means that
among L − 1 off-diagonal blocks (SH FαS) ⊗ IMr

, 0 ≤ α ≤
L − 1 of MH (S)M(S) in (11) there is only one nonzero
block, namely (SH FK S) ⊗ IMr

(when L is even), or two
nonzero blocks, namely (SH FK S) ⊗ IMr

and (SH F2K S) ⊗
IMr

(when L is odd). These nonzero blocks are off-diagonal
sparse according to (61) and (62) since Mt is large. Therefore,
the convex optimization problem (24) is a tight approximation
of the nonconvex optimization problem (18).

VI. SIMULATION RESULTS

This section presents simulation results to illustrate the perfor-
mance of our proposed methods. Considered in the simulation
are large-scale MIMO-OFDM systems employing M = 1024
sub-carriers. Due to the BS form factor limitation in practice[1],
[2], the BS is equipped with Mh × Mv uniform planar arrays
(UPAs) on a half-wavelength lattice, where there are Mh rows
in the horizontal dimension and Mv columns in the vertical
dimension. For example, 4 × 4, 8 × 4 and 8 × 8 correspond-
ing to Mt = 16, Mt = 32 and Mt = 64, respectively. There are
Mr = 2 antennas at each user terminal that are separated with
a half wavelength. The wideband frequency-selective channel
is simulated with L = 4 taps, where the power gains are set
as (σ2

0 , σ2
1 , σ2

2 , σ2
3 ) = (0.3, 0.3, 0.2, 0.2). Here, the spatial cor-

relation matrix at the BS is written as RT ,� = Rh,� ⊗ Rv ,� ,
where Rh,� and Rv ,� are the horizontal and vertical channel



covariance matrices, respectively. Rh,� and Rv ,� can be rep-
resented by one-ring model [34] that is extended to two-
dimensional or planar array [25], and is given as

[Rs,� ]p,q =
1

2�s,�

∫ θ̄s , � +�s , �

θ̄s , � −�s , �

e−jπ (p−q) sin(α)dα,

where s ∈ {h, v}, �h,� and �v ,� are the angle spreads in the
horizontal and vertical dimensions, respectively, θ̄h,� and θ̄v ,�

are the angles of departure from the transmit array. Likewise,
the spatial correlation matrix at the receiver is expressed as

[RR ,� ]p,q =
1

2�r,�

∫ θ̄r , � +�r , �

θ̄r , � −�r , �

e−jπ (p−q) sin(α)dα,

where �r,� and θ̄r,� are the angle spread and angle of arrival at
the receive array. In the simulations, the angle spreads are the
same and equal to σθ = 12◦. The cyclic prefix is chosen to be
L − 1 which is long enough to cancel inter-block interference.
The power budget is2

Ptot = MMt. (63)

Thus, the total power for data symbols is

Psym = MMt − Pt, (64)

which is equally located for all data symbols. Specifically, the
received signal over the kth data sub-carrier is given as

r(k) =
√

ρs

Mt
Hf (k)s(k) + n(k), k /∈ {t0 , . . . , tN −1}, (65)

where ρs = Psym/(M − N)Mt and

Hf (k) := H(Wk
M ) =

L−1∑

�=0

H�W
�k
M .

Example 1: This simulation example numerically evaluates
the performance of optimal training sequences designed in
Sections III for downlink channel state estimation of large-scale
MIMO-OFDM systems. The angles of departure are set to be

(θ̄h,0 , θ̄h,1 , θ̄h,2 , θ̄h,3) = (13◦, 16◦, 20◦, 24◦) and

(θ̄v ,0 , θ̄v ,1 , θ̄v ,2 , θ̄v ,3) = (20◦, 25◦, 28◦, 33◦), (66)

and the angles of arrival are

(θ̄r,0 , θ̄r,1 , θ̄r,2 , θ̄r,3) = (290◦, 300◦, 315◦, 320◦). (67)

We first focus on the case of using the optimum training length,
namely N = LMt . In our discussion, the term “effective rank”
is defined as the number of eigenvalues that are larger than the
threshold 10−6 . The maximum effective ranks τmax correspond-
ing to Mt = 16, Mt = 32 and Mt = 64 are found to be 13, 20
and 30, respectively. It is the small angle spread (σθ = 12◦)
that results into the singularity of RT ,� . The MSE with opti-
mal training sequences Xopt found by the proposed FCP in
(41) with εtol = 10−5 and ε = 10−6 is plotted in Fig. 2, which
is also compared with the equi-power solution (S =

√
NQ).

The optimal training sequences Xopt clearly and significantly

2Recall that the noise component in (5) is modeled to have unit variance.

Fig. 2. MSE of FCP and equi-power solutions with N = LMt in the downlink
transmission: (66) and (67).

TABLE I
THE EFFECTIVE RANK OF Xopt/X̃opt IN (41)/(47)

Fig. 3. MSE for training sequences obtained with FCP and Faster CP in the
downlink transmission: N = LMt , (66) and (67).

outperform the equi-power solution. Furthermore, the effective
rank of Xopt is provided in Table I, which can be seen to be
smaller than the effective rank τmax . According to (25), no more
than τopt ≤ τmax out of Mt antennas need to send the training
sequence.

Next, we compare the performance of training sequences ob-
tained with FCP and Faster CP. According to the definition of
RT ,� , the matrix U� depends on the angles of departure and the
angle spreads. Here, we consider two cases of the angles of de-
parture. When the angles of departure are set as (66), Fig. 3 plots
the MSE for training sequences obtained with FCP and Faster



Fig. 4. MSE for training sequences obtained with FCP and Faster CP in the
downlink transmission: N = LMt , (67) and (68).

CP. There are only small improvements in using FCP instead of
Faster CP. This is due to the fact that such small angles of de-
parture (θ̄h,0 , θ̄h,1 , θ̄h,2 , θ̄h,3) and (θ̄v ,0 , θ̄v ,1 , θ̄v ,2 , θ̄v ,3) result in
similar U� (� = 0, 1, . . . , L − 1). We also provide the effective
rank of X̃opt in Table I.

For larger angles of departure, such as

(θ̄h,0 , θ̄h,1 , θ̄h,2 , θ̄h,3) = (13◦, 20◦, 36◦, 50◦) and

(θ̄v ,0 , θ̄v ,1 , θ̄v ,2 , θ̄v ,3) = (20◦, 35◦, 49◦, 65◦), (68)

the unitary matrices U� (� = 0, 1, . . . , L − 1) become different.
With these particular settings of angles, the maximum effective
ranks τmax corresponding to Mt = 16, Mt = 32 and Mt = 64
are still 13, 20 and 30, respectively. Fig. 4 shows the MSE for
training sequences obtained with FCP and Faster CP. In this
case, FCP clearly outperforms Faster CP.

Example 2:As mentioned earlier, in the case of N = LMt/2,
the convex optimization problem (24) becomes a lower bound
minimization of the nonconvex optimization problem (18).
Hence, training sequences found by FCP in Section III are not
optimized. However, the SQP algorithm proposed in Section IV
is able to find the optimal training sequences. First, for the angles
of departure and arrival set as (66) and (67) and N = LMt/2,
the values of MSE achieved by optimal training sequences found
by SQP and FCP are compared in Fig. 5. As expected, the opti-
mal training sequences found by SQP significantly outperform
training sequences found by FCP with Mt ∈ {16, 32}. Fig. 6
plots the MSEs of SQP in (54) with Mt = 16 and N = LMt/2
versus iteration numbers for different SNR values and when
εtol = 10−5 is set for the stop criterion. It is observed that the
MSE is monotonically decreasing with increasing iteration num-
ber. Fig. 7 plots the MSE for optimal training sequences obtained
by FCP with N = LMt and SQP with N = LMt/2. It can be
seen that the optimal training sequences by FCP with full length
N = LMt achieves better MSE than that achieved by the train-
ing sequences with the reduced, half-length N = LMt/2 found
by SQP. This is expected since when longer training sequences
are used for channel estimation, the channel estimation becomes
more accurate.

Fig. 5. MSE for training sequences obtained with FCP and SQP in the down-
link transmission: N = LMt /2, (66) and (67).

Fig. 6. The MSE of SQP in (54) with Mt = 16 and N = LMt /2 versus the
number of iterations in the downlink transmission with (66) and (67).

Fig. 7. MSE achieved by training sequences obtained with FCP when N =
LMt and with SQP when N = LMt /2: Downlink transmission with (66) and
(67).



Fig. 8. MSE for training sequences obtained with FCP and SQP in the down-
link transmission: N = LMt /2, (67) and (68).

Fig. 9. MSE achieved by training sequences obtained with FCP when N =
LMt and with SQP when N = LMt /2: Downlink transmission with (67) and
(68).

Second, we further investigate the MSE performance in the
case of (67) and (68) and N = LMt/2. Fig. 8 shows that bet-
ter MSE performance can be obtained by the optimal training
sequences of SQP than the optimal training sequences of FCP.
It also can be seen that optimal training sequences obtained by
FCP with N = LMt outperforms SQP with N = LMt/2 in
Fig 9.

Example 3: In the last example, we consider optimal
training sequences designed for uplink channel state esti-
mation of large-scale MIMO-OFDM. In the uplink trans-
mission, we set Mt = 2, Mr ∈ {16, 32, 64}, (θ̄h,0 , θ̄h,1 , θ̄h,2 ,
θ̄h,3) = (13◦, 16◦, 20◦, 24◦), (θ̄v ,0 , θ̄v ,1 , θ̄v ,2 , θ̄v ,3) =
(20◦, 25◦, 28◦, 33◦), and (θ̄t,0 , θ̄t,1 , θ̄t,2 , θ̄t,3) = (290◦, 300◦,
315◦, 320◦). Since the length N = LMt = 8 satisfying (8) is
still a small number, we use it in this uplink example. The opti-
mal training sequence is given by (25), where Xopt ∈ C2×2

is the optimal solution of (24). Observe that the dimension
2 × 2 of the variable X is very small in comparison with the

Fig. 10. MSE achieved by training sequences obtained with FCP and equi-
power training sequences when N = LMt : Uplink transmission.

dimension of the involved matrices in (24). Therefore it is very
likely that the equi-power solution X = NI2 provides almost
optimal solution of (24). The comparison of MSE in Fig. 10 for
optimal training sequences obtained with FCP and training se-
quences S =

√
NQ confirms this expectation. Therefore, like

massive MIMO uplink transmission [35], there is no need to
solve (24) as the equi-power training sequence

√
NQ is practi-

cally optimal. It can be stated that the optimal training sequence
design is much more challenging for the downlink than uplink
of large-scale MIMO-OFDM systems.

VII. CONCLUSIONS

In this paper, we have considered the optimal design of train-
ing sequences for channel estimation in spatially-correlated
large-scale MIMO-OFDM systems. The design objective is to
minimize the mean square error of the channel estimate. For
full-length training sequences, we showed that the design prob-
lem can be transformed into a large-scale semi-definite program.
We have also developed fast computation procedures for its so-
lutions. For reduced-length training sequences the design prob-
lem is highly nonconvex but is shown to be efficiently addressed
by our proposed sequential convex programming of low com-
putational complexity. Numerical results confirm the superior
performances of the proposed training sequences.

APPENDIX

USEFUL LEMMAS

Lemma 3: For A,B � 0,C and X � 0 and X̄ � 0 of ap-
propriate size, it is true that

tr[C(I + (AXAH ) ⊗ B)−1CH ]

≤ tr[C(I + (AX̄AH ) ⊗ B)−1CH ]

+ tr[(I + (AX̄AH ) ⊗ B)−1CH

× C(I + (AX̄AH ) ⊗ B)−1

× ((A(X̄X−1X̄ − X̄)AH ) ⊗ B)]. (69)

Proof: Function F (X) := tr[C(I+(AX−1AH)⊗B)−1CH ]
is concave in X � 0 according to [20, Lemma 1].



Therefore [36]

F (X) ≤ F (X̄) + 〈∇F (X̄),X − X̄〉
= F (X̄) + tr[(I + (AX̄−1AH ) ⊗ B)−1CH C(I

+ (AX̄−1AH ) ⊗ B)−1((AX̄−1(X − X̄)X̄−1

× AH ) ⊗ B)]

for all X � 0 and X̄ � 0. Replacing X → X−1 and X̄ → X̄−1

into the last inequality leads to

tr[C(I + (AXAH ) ⊗ B)−1CH ]

≤ tr[C(I + (AX̄AH ) ⊗ B)−1CH ]

+ tr[(I + (AX̄AH ) ⊗ B)−1CH

C(I + (AX̄AH ) ⊗ B)−1

((A(X̄X−1X̄ − X̄)AH ) ⊗ B)]

∀ X � 0, X̄ � 0.

Note that the right hand side does not involve the inverse of X̄ so
by using the perturbation argument X̄ → X̄(ε) = X̄ + εI � 0
for ε → 0+ we can see that (69) is still true for X̄ � 0. �

Lemma 4: For Y � 0, Ȳ � 0 and S, S̄ of appropriate di-
mension, one has

tr(SH Y−1S) ≥ 2�{tr(S̄H Ȳ−1S)} − tr(S̄H Ȳ−1YȲ−1 S̄)
(70)

Proof: Using [37], function f(S,Y) := tr(SH Y−1S)
is convex on the domain {(S,Y) : Y � 0}. Therefore
[36], f(S,Y) ≥ f(S̄, Ȳ) + 〈∇f(S̄, Ȳ), (S,Y) − (S̄, Ȳ)〉=
2�{tr(S̄H Ȳ−1S)} − tr(S̄H Ȳ−1YȲ−1 S̄), which proves
(70). �
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