J. H. Albert, Genericity of simple eigenvalues for elliptic PDE's. Proceedings of the, vol.48, pp.413-418, 1975.

C. Alvarez, C. Conca, L. Friz, O. Kavian, and J. H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, vol.21, pp.1531-1552, 2005.

H. Ammari, P. Garapon, H. Kang, and H. Lee, A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements, Quarterly of Applied Mathematics, vol.66, pp.139-175, 2008.

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, vol.1846, 2004.

V. I. Arnold, Geometrical Method in the Theory of Ordinary Differential Equations, 1988.

K. Beauchard, Y. Chitour, D. Kateb, and R. Long, Spectral controllability for 2d and 3d linear schrödinger equations, Journal of Functional Analysis, vol.256, pp.3916-3976, 2009.

M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves, and Surfaces, vol.115, 1988.

H. Brezis, Analyse fonctionnelle: Théorie et applications. Collection Mathématiques appliquées pour la maîtrise, 1983.

Y. Chitour, J. Coron, and M. Garavello, On conditions that prevent steady-state controllability of certain linear partial differential equations, Discrete and Continuous Dynamical Systems, vol.14, issue.4, pp.643-672, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02320780

G. De-rham, Differentiable Manifolds, A Series of Comprehensive Studies in Mathematics, vol.266, 1984.

L. C. Evans, Partial Differential Equations, vol.19, 1999.

C. Foias, L. Hoang, E. Olson, and M. Ziane, On the solutions to the normal form of the Navier-Stokes equations, Indiana University Mathematics Journal, vol.55, issue.2, pp.631-686, 2006.

C. Foias, L. Hoang, E. Olson, and M. Ziane, The normal form of the Navier-Stokes equations in suitable normed spaces. Annales de l'Institut Henri Poincaré (C) Analyse Nonlinéaire, vol.26, pp.1635-1673, 2009.

C. Foias, L. Hoang, and J. C. Saut, Asymptotic integration of Navier-Stokes equations with potential forces. II. An explicit Poincaré-Dulac normal form, Journal of Functional Analysis, vol.260, pp.3007-3035, 2011.

C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes Equations and Turbulence, of Encyclopedia of methematics and its applications, vol.83, 2001.

C. Foias and J. C. Saut, Linearization and normal form of the Navier-Stokes equations with potential forces. Annales de l'Institut Henri Poincaré, pp.1-47, 1987.

D. Gilbard and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 1998.

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, volume 5 of Springer series in computational mathematics, 1986.

A. Henrot and M. Pierre, Variation et optimisation de forme, Mathématiques et Applications SMAI, vol.48, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00013871

D. Henry, Perturbation of the boundary in Boundary-Value Problems of Partial Differential Equations, vol.318, 2005.

G. Hsiao and W. L. Wendland, Boundary Integral Equations, Applied Mathematical Sciences, vol.164, 2008.

T. Kato, Perturbation theory for linear operators, 1976.

O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 1968.

A. M. Micheletti, Metrica per famiglie di domini limitati e proprietà generiche degli autovalori, vol.26, pp.683-694, 1972.

J. H. Ortega and E. Zuazua, Generic simplicity of the eigenvalues of the Stokes system in two space dimensions, Advances in Differential Equations, vol.6, pp.987-1023, 2001.

J. H. Ortega and E. Zuazua, On a constrained approximate controllability problem for the heat equation: addendum, Journal of Optimization Theory and Applications, vol.118, issue.1, pp.183-190, 2003.

A. Osses, A rotated multiplier applied to the controllability of waves, elasticity, and tangential stokes control, SIAM Journal on Control and Optimization, vol.40, issue.3, pp.777-800, 2001.

W. Pogorzelski, Integration Equations and Their Applications, volume I, 1966.

J. Simon, Différentiation de problèmes aux limites par rapport au domaine. Lecture notes, 1991.

J. Simon, Démonstration constructive d'un théorème de G. de Rham. Comptes Rendus de l'Académie des Sciences: série I, 1993.

J. Simon, Équations de Navier-Stokes. Lecture notes, 2003.

E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton university press, 1970.

R. Temam, Navier-Stokes equations: theory and numerical analysis, 2001.

S. A. Yang, Evaluation of the Helmholtz boundary integral equation and its normal and tangential derivatives in two dimensions, Journal of sound and vibration, vol.301, pp.864-877, 2007.