A. L. Besse, Classics in Mathematics, 2008.

C. P. Boyer, K. Galicki, and . Sasakian-geometry, Oxford Mathematical Monographs, 2008.

C. P. Boyer and K. Galicki, 3-Sasakian manifolds, Surveys in differential geometry: essays on Einstein manifolds, pp.123-184, 1999.

C. P. Boyer and M. Nakamaye, On Sasaki-Einstein manifolds in dimension five, Geom. Dedicata, vol.144, pp.141-156, 2010.

Y. Chitour and P. Kokkonen, Rolling Manifolds: Intrinsic Formulation and Controllability, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00535711

Y. Chitour and P. Kokkonen, Rolling Manifolds on Space Forms, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.29, issue.6, pp.927-954, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02320824

Y. Chitour, M. Godoy-molina, and P. Kokkonen, On the Controllability of the Rolling Problem onto the Hyperbolic n-space
URL : https://hal.archives-ouvertes.fr/hal-01271288

Y. Chitour, M. Godoy-molina, and P. Kokkonen, Symmetries of the rolling model
URL : https://hal.archives-ouvertes.fr/hal-01271285

G. Molina, M. Grong, E. Markina, I. Silva-leite, and F. , An intrinsic formulation of the problem on rolling manifolds, J. Dyn. Control Syst, vol.18, issue.2, pp.181-214, 2012.

D. D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry, 2007.

P. Kokkonen, Rolling of manifolds without spinning, J. Dyn. Control Syst, vol.19, issue.1, pp.123-156, 2013.

B. O'neill, Semi-Riemannian Geometry with Applications to Relativity, 1983.

D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math, issue.2, pp.454-470, 1943.

S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost complex structure, Tohoku Math. J, vol.2, pp.459-476, 1960.

J. Sparks, Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, Surv. Differ. Geom, vol.16, pp.265-324, 2011.