A. Agrachev and Y. Sachkov, An intrinsic Approach to the control of Rolling Bodies, Proceedings of the Conference on Decision and Control, vol.I, pp.431-435, 1999.

A. Agrachev and Y. Sachkov, The Orbit Theorem and its Applications, Encyclopaedia of Mathematical Sciences, vol.87, pp.63-80, 2004.

A. Bellaiche, The tangent space in sub-Riemannian geometry, Progress in Mathematics, vol.144, 1996.

A. E. Besse and . Manifolds, , 2007.

A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer Monographs in Mathematics, 2007.

E. Cartan, La géométrie des espaces de Riemann Memorial of mathematical sciences, vol.9, pp.1-61, 1925.

Y. Chitour, A Continuation Method for Motion-Planning Problems, ESAIM-COCV, vol.12, pp.139-168, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02320777

Y. Chitour, G. Molina, M. Kokkonen, and P. , The Rolling Problem: Overview and Challenges, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02320829

Y. Chitour and P. Kokkonen, Rolling Manifolds: Intrinsic Formulation and Controllability, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00535711

Y. Chitour and P. Kokkonen, Rolling Manifolds and Controllability: the 3D case

Y. Chitour and P. Kokkonen, Rolling Manifolds on Space Forms, Ann. I. H. Poincaré -AN, vol.29, pp.927-954, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02320824

D. L. Drager, J. M. Lee, E. Park, and K. Richardson, Smooth distributions are finitely generated, Ann. Glob. Anal. Geom, 2012.

E. Falbel, C. Gorodsky, and M. Rumin, Holonomy of sub-Riemannian manifolds, International Journal of Mathematics, vol.8, pp.317-344, 1997.

G. Molina, M. Grong, E. Markina, I. Leite, and F. S. , An intrinsic formulation of the rolling manifolds problem, Journal of Dynamical Control Systems, vol.18, 2012.

M. Goto, On an Arcwise Connected Subgroup of a Lie Group, Proceedings of the American Mathematical Society, vol.20, issue.1, 1969.

P. Harms, The Poincaré Lemma in Subriemannian Geometry, 2012.

J. Hilgert and K. H. Neeb, Structure and Geometry of Lie Groups, 2011.

F. Jean, Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion PLanning, Springer Briefs in Mathematics, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01137580

V. Jurdjevic, Geometric Control Theory, 1997.

D. Joyce, Riemannian Holonomy Groups and Calibrated Geometry, 2007.

P. Kokkonen, A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles, Tomus, vol.48, issue.3, 2012.

P. Kokkonen, Rolling of Manifolds without Spinning, Journal of Dynamical and Control Systems, vol.19, issue.1, 2013.

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol.I, 1996.

A. Mortada, P. Kokkonen, and Y. Chitour, Rolling manifolds of different dimensions. accepted for publication in, Acta Applicandae Mathematicae, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01271291

H. Ozeki, Infinitesimal holonomy groups of bundle connections, Nagoya Math, J, vol.10, pp.105-123, 1956.

M. M. Postnikov, V. Geometry, and . Geometry, Encyclopedia of Mathematical Sciences, 2001.

L. Rifford, Subriemannian Geometry and Optimal Transport, Springer Briefs in Mathematics, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131787

T. Sakai and R. Geometry, Translations of Mathematical Monographs, vol.149, 1996.

R. W. Sharpe, Differential Geometry: Cartan's Generalization of Klein's Erlangen Program Graduate Texts in Mathematics, vol.166, 1997.

H. Sussmann, Smooth Distributions Are Globally Finitely Spanned, Analysis and Design of Nonlinear Control Systems, 2008.