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SUMMARY

This paper deals with the attitude stabilization problem of a rigid body, where neither the angular velocity
nor the attitude are used in the feedback; only body-referenced vector measurements are needed. The
proposed control scheme is based on an angular velocity observer-like system relying solely on vector
measurements. The proposed controller ensures almost global asymptotic stability and provides some
interesting performance properties through an appropriate tuning of the control gains. The performance
and effectiveness of the proposed control scheme are illustrated via simulation results where the control
gains are adjusted using a nonlinear optimization. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The stabilization of a rotational motion of a rigid body is a well studied problem in the literature (see,
for instance, [1–7]). Despite the large number of existing solutions to this problem, it remains an
active research topic due to its challenges and potential applications in many fields such as robotics,
unmanned aerial vehicles (UAVs), satellites, marine vehicles, etc. The attitude control problem has
been dealt with in the literature using different types of attitude parametrization such as the Euler
angles and the modified Rodrigues parameters which are local and minimal attitude representations
(see, for instance, [8, 9]). Other solutions relying on the global and unique attitude representation
evolving in the Special Orthogonal group SO(3) have also been proposed in the literature (see, for
instance, [10, 11]). However, for the sake of design and implementation simplicity, a number of
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2 L. BENZIANE ET AL.

solutions to the attitude stabilization problem rely on the quaternion parametrization as a global (but
non-unique) representation evolving in the unit sphere S3 (see, for instance, [2, 4, 5]).

Roughly speaking, attitude control schemes have a proportional-derivative structure where the
derivative action is in terms of the angular velocity. Designing attitude control schemes without
angular velocity measurements is a more challenging problem that has been solved, for instance,
in [12–19]. Removing the requirement of the angular velocity in the feedback allows to spare
the use of gyroscopes which can be prone to failure and very expensive such as those used in
satellites or sophisticated space telescopes. For instance, space telescope Hubble is equipped with
six gyroscopes among which three are used as backups. In 2009, all six of Hubble’s gyroscopes had
to be replaced and one can imagine the cost generated. Therefore, it is conceivable to reduce costs
and ensure continuity of a spacecraft mission despite the failure of the gyroscopes when velocity-
free controllers are used. In most of existing velocity-free control schemes, the attitude is explicitly
used in the feedback as a proportional action. As there is no sensor which physically measures the
attitude of a rigid body, the aforementioned velocity-free controllers require some kind of attitude
determination algorithm or attitude estimator relying on the available direction sensors. It is well
known that static attitude determination algorithms are very sensitive to noise [20–22]. On the other
hand, dynamic attitude estimators, relying on gyro and body-referenced vector measurements, such
as Kalman filters and complementary filters are very efficient in the presence of noise [23–25].
Therefore, velocity-free attitude control schemes using body-referenced vector measurements in
the feedback would indirectly require the angular velocity to efficiently recover the attitude. To
overcome this problem, a velocity-free attitude control scheme, that incorporates explicitly vector
measurements instead of the attitude itself, has been proposed for the first time in [26] leading to
almost global asymptotic stability results∗

A velocity-free attitude stabilization scheme relying solely on body-referenced vector
measurements leading to almost global stability results is proposed in the present paper. The
proposed solution, which extends preliminary work that appeared in [28], can be regarded as an
improved version of [26]. The main differences are as follows: (a) the use of an auxiliary system
in terms of body vector measurements, rather than an auxiliary system in terms of unit-quaternion;
(b) An explicit design of an angular velocity observer-like system which is used in the design of the
stabilizing feedback.
As a consequence, the set of unstable equilibria of the closed loop dynamics is reduced as compared
to that of [26]. It is also shown that the proposed auxiliary error system does not make use of inertial
fixed reference vectors as in [26], and that the introduction of gain matrices improves the controller
performance. Moreover, it is shown that if at least two observed vectors are non-collinear, then there
always exist positive control gains leading to almost global asymptotic stability results. Finally, in
order to adjust properly the controller gains, a constrained non-linear optimal tuning method is used.

∗Since it is impossible to achieve a global asymptotic attitude stabilization using continuous time-invariant state feedback
[27], the strongest result that one can achieve in the rotational motion space is “Almost Global Asymptotic Stability”
(AGAS). This notion is used in the sense that the desired equilibrium is asymptotically stable for all initial conditions
belonging to an open and dense set in SO(3).
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VELOCITY-FREE ATTITUDE STABILIZATION WITH INERTIAL VECTOR MEASUREMENTS 3

2. NOTATIONS AND PROBLEM FORMULATION

2.1. Notations

The attitude is represented by a rotation matrix R or a unit-quaternion Q = [q0,qT ]T . Let R ∈
SO(3) = {R ∈ R3×3 | RT R = RRT = I3×3,det(R) = 1} and Q ∈ S3 = {Q ∈ R4 | QT Q = 1}. The
multiplication of two quaternion P = (p0, pT )T and Q = (q0,qT )T is denoted by “�” and defined as

P�Q =

[
p0q0− pT q

p0q+q0 p+ p×q

]
. The Lie algebra of SO(3) is denoted by so(3), i.e., the set of skew

symmetric matrices S generated via the Lie algebra isomorphism from R3→ so(3) which associates
to x = [x1,x2,x3]

T the skew-symmetric matrix S(x) given by

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
Note that for every x,y ∈ R3, one has S(x)y = x× y where × stands for the vector cross product.

The mapping R : S3→ SO(3) given by Rodrigues’ rotation formula [31]

R(Q) = I3×3 +2q0S(q)+2S(q)2, (1)

defines a double covering map of SO(3) by S3, i.e., for every R ∈ SO(3) the equation R(Q) = R
admits exactly two solutions QR and −QR. As a consequence, a vector field f of S3 projects onto
a vector field of SO(3) if and only if, for every Q ∈ S3, f (−Q) = − f (Q) (where the obvious
identification between TQS3 the tangent space of S3 at Q and T−QS3 the tangent space of S3 at
−Q was made), for more details see [29, 30].

In what follows and for simplicity, the notations below are used.

• If m is a positive integer, Mm(R) is used to denote the set of m by m matrices with real entries;
03, 03n, 0 and I denote the 3 by 3 zero matrix, the 3n by 1 zero vector, the 3 by 1 zero vector
and the 3 by 3 identity matrix respectively;

• {B} and {I } denote an orthonormal body-attached frame with its origin at the center of
mass of the rigid-body and the inertial reference frame on earth respectively.

For every x,y ∈ R3 and a given R ∈ SO(3) one has the following [31]

S(x)y = −S(y)x, S(x)x = 0,
S(x)S(y) = yxT − xT yI, S2(x) = xxT − xT xI,
S(S(x)y) = S(x)S(y)−S(y)S(x), S(Rx) = RS(x)RT .

2.2. Problem formulation

The attitude of a rigid body is governed by

Ṙ(t) = R(t)S(ω(t)), (2)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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4 L. BENZIANE ET AL.

where R ∈ SO(3). The equivalent kinematics evolving in S3 are given by

Q̇(t) =

[
q̇0(t)
q̇(t)

]
=

[
− 1

2 qT (t)ω(t)
1
2(q0(t)I +S(q(t)))ω(t)

]
, (3)

with ω(t) being the angular velocity of the rigid body expressed in {B} and Q ∈ S3 being the unit
quaternion. Let n≥ 2 be an integer and let bi(Q(t)) = bi(t) ∈R3 (i = 1, . . . ,n) be a measured vector
expressed in {B}. The relation between bi(t) and its corresponding inertial vector ri ∈ R3 is given
by

bi(t) = RT (t)ri . (4)

Using (2) and (4), one can obtain the reduced attitude kinematics

ḃi(t) = S(bi(t))ω(t), i = 1, . . . ,n. (5)

The simplified rigid body rotational dynamics are governed by

Jω̇(t) =−S(ω(t))Jω(t)+ τ(t), (6)

where

• J ∈ R3×3 is a symmetric positive definite constant inertia matrix about the center of mass of
the rigid body expressed in {B};

• τ(t) is the external torque applied about the center of mass of the rigid body expressed in
{B};

The problem addressed in this work is the design of an attitude stabilizing control τ(t) relying only
on vector measurements bi(t), without using the angular velocity ω(t) in the feedback.

2.3. Assumptions

The following assumptions are made for the rest of the paper.

A1. Assume that only the n vector-valued functions of time bi(t) are measured and no similar
assumption are made on angular velocity vector ω(t). Moreover, note that the bi’s actually
depend on the rotation R and one could also write them as bi(R(t)) or bi(Q(t)). In the sequel,
notations bi(t) or bi(Q(t)) will be used equivalently.

A2. At least two vectors r1, r2 are non-collinear. As a consequence, b1(t) and b2(t) are linearly
independent for all non negative times.

A3. The desired rigid body attitude is defined by the constant rotation matrix Rd . It relates an inertial
vector ri to its corresponding vector in the desired frame, i.e., bd

i = RT
d ri, with ḃd

i = 0. An
equivalent constant desired unit-quaternion Qd is defined as Rd = R(Qd).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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VELOCITY-FREE ATTITUDE STABILIZATION WITH INERTIAL VECTOR MEASUREMENTS 5

3. HANDLING THE LACK OF ANGULAR VELOCITY AND DESIGN OF THE ATTITUDE
CONTROLLER

3.1. Angular velocity observer-like system

As well known, the reduced attitude kinematic is defined by (5). Let Γ = diag(Λ1, . . . ,Λn), where
Λi be a symmetric positive definite 3×3 matrix, for 1≤ i≤ n. Let M(t) = ∑

n
i=1 S(bi(t))T ΛiS(bi(t)),

which is a symmetric positive definite matrix, thanks to Assumption A2.
Multiplying (5) by S(bi(t))Λi for 1≤ i≤ n and summing, yields

n

∑
i=1

S(bi(t))Λiḃi(t) =−M(t)ω(t). (7)

From (7), the actual angular velocity ω(t) is given by

ω(t) =−M−1(t)
n

∑
i=1

S(bi(t))Λiḃi(t). (8)

Since ḃi(t) is not a measured quantity, the following angular velocity observer-like signal is
proposed

ω̂(t) =−M−1(t)
n

∑
i=1

S(bi(t))Λi
˙̂bi(t), (9)

where the vector ˙̂bi(t) can be viewed as an estimate of the vector ḃi(t) using the following linear
first-order filter on bi (i = 1, . . . ,n)

˙̂bi(t) = Ai(bi(t)− b̂i(t)), (10)

where the constant matrices Ai ∈ R3×3 are chosen as Ai = Pi(Λi), for 1≤ i≤ n, with Pi being a
positive polynomial of degree two on R∗+, and R∗+ denotes the set of strictly positive real numbers.
As a trivial consequence, Ai, 1≤ i≤ n, is symmetric positive definite and commutes with Λi. Let
A , diag(A1, · · · ,An), Γd , diag(RdΛ1RT

d , · · · ,RdΛnRT
d ) and Ad , diag(RdA1RT

d , · · · ,RdAnRT
d ).

Then Γd and Ad commute.

Defining the error signal b̃i(t) = bi(t)− b̂i(t), and using (10) and (5) one has ˙̃bi(t) = −Aib̃i(t)+
S(bi(t))ω, which can be rewritten using the state vector defined by ζ (t) := [b̃T

1 (t), · · · , b̃T
n (t)]

T , as

ζ̇ (t) =−Aζ (t)+B(t)ω(t), (11)

where B(t) =
[

S(b1(t))T · · · S(bn(t))T
]T

. Finally, the angular velocity observer-like signal
can be written as

ω̂(t) = M−1(t)BT (t)ΓAζ (t). (12)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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6 L. BENZIANE ET AL.

3.2. Controller Design

The orientation error is defined by
R̄(t) = R(t)RT

d , (13)

where R(t) is a rotation matrix and Rd is a constant desired rotation matrix. From (2) and (13) one
can obtain the attitude error dynamics as follows

˙̄R(t) = R̄(t)S(Rdω(t)). (14)

The corresponding quaternion error Q̄(t) = Q(t)�Q−1
d (t) ≡ [q̄0(t), q̄(t)T ]T whose dynamics are

governed by [
˙̄q0(t)
˙̄q(t)

]
=

[
− 1

2 q̄T (t)Rdω(t)
1
2 (q̄0(t)I +S (q̄(t)))Rdω(t)

]
. (15)

The reduced orientation error is given by b̄i(t) = bi(t)−bd
i . Therefore, one can get

b̄i(t) = RT
d (R̄(t)

T − I)ri, (16)

where 1≤ i≤ n which can be rewritten using (1) as

b̄i(t) = b̄i(Q̄(t)) =−2RT
d (q̄0(t)I−S(q̄(t)))S(q̄(t))ri. (17)

The following control law is proposed

τ(t) = zρ(t)−Mω̂(t), (18)

where the term zρ(·) was introduced in [26] and is given by

zρ(t) =
n

∑
i=1

ρiS(bd
i )bi, (19)

where the coefficients ρi’s are positive constants. Define

Wρ =−
n

∑
i=1

ρiS2(ri), (20)

which is a symmetric positive definite matrix, see Lemma 2 in [26]. It has been shown in Lemma 1
of [26] that zρ(·) can be rewritten as

zρ(t) =−2RT
d (q̄0(t)I−S(q̄(t)))Wρ q̄(t). (21)

Consequently, τ(·) can be rewritten as

τ(t) =−2RT
d (q̄0(t)I−S(q̄(t)))Wρ q̄(t)−Mω̂(t). (22)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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VELOCITY-FREE ATTITUDE STABILIZATION WITH INERTIAL VECTOR MEASUREMENTS 7

Using (11), (15), (6) and (22), one can obtain the following closed loop dynamics

ζ̇ = −Aζ +B(Q̄)ω,

˙̄q0 = − 1
2 q̄T Rdω,

˙̄q = 1
2(q̄0I +S(q̄))Rdω,

Jω̇ = −S(ω)Jω−2RT
d (q̄0I−S(q̄))Wρ q̄−Mω̂.

(23)

One can make further simplifications by changing variables as follows

ζ → ξ = [(Rd b̃1(Q(t)))T , · · · ,(Rd b̃n(Q(t)))T ]T , ω → ω̄ = Rdω.

By setting

Jd := RdJRT
d , Bd :=

[
S(Rdb1)

T · · · S(Rdbn)
T
]T

,

one can end up with the following autonomous dynamics

ξ̇ = −Adξ +Bdω̄,

˙̄q0 = − 1
2 q̄T ω̄,

˙̄q = 1
2(q̄0I +S(q̄))ω̄,

Jd ˙̄ω = −S(ω̄)Jdω̄−2(q̄0I−S(q̄))Wρ q̄−BT
d ΓdAdξ .

(24)

Note that Jd is a real symmetric positive definite matrix. If one defines the state χ := (ξ , Q̄, ω̄) and
the state space ϒ :=R3n×S3×R3, one can rewrite (24) as χ̇ = F(χ) where F gathers the right-hand
side of (24) and defines a smooth vector field on ϒ. Moreover, note that Q̄ and −Q̄ represents the
same physical rotation, implying that (24) projects on SO(3) as an autonomous differential equation.

Lemma 1. With the notations above, the set of gains ρ = (ρ1, · · · ,ρn) leading to simple eigenvalues
of the matrix Wρ is dense and open in (R∗+)n.

Proof
For ρ ∈ (R∗+)n, let Pρ(·) be the characteristic polynomial of Wρ and ∆(ρ) its discriminant [32].
Recall that ∆(ρ) = 0 if and only if Pρ(·) admits a multiple root. Since Wρ is a 3 by 3 real symmetric
positive definite matrix for every ρ ∈ (R∗+)n, ∆(ρ) is actually a homogeneous polynomial of degree
six in ρ (for more details about the evaluation of the discriminant see page 102 of [33]). Thus the
locus ∆(ρ) = 0 defines an algebraic variety of co-dimension one in (R∗+)n (see, for instance, [34])
and, on its complementary set S in (R∗+)n, Wρ has simple eigenvalues, which means that the set of
gains ρ leading to simple eigenvalues of Wρ is dense and open in (R∗+)n.

This genericity result serves a justification to the following working hypothesis, which will hold
for the rest of the paper.

(GEN) Wρ has simple eigenvalues.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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8 L. BENZIANE ET AL.

4. STABILITY ANALYSIS OF THE PROPOSED CONTROLLER

As often, it turns out that it is simpler for the stability analysis to use unit quaternion for the attitude
representation instead of elements of SO(3), even-though a result formulated in terms of orthogonal
matrices is interesting. This is why the stability analysis is completed using unit quaternion and a
theorem (Theorem 1) is obtained, after it will be straightforward to state the main result in terms of
elements of SO(3) by simply projecting Theorem 1 using Rodriguez formula (1).

Lemma 2. Under the hypothesis (GEN), the solutions of equation zρ = 0 where zρ is defined by
(21) are the following: (a) the two points ±(1,0); the six points ±(0,vi), 1≤ i≤ 3, with (v1,v2,v3)

being an orthonormal basis diagonalizing Wρ .

Proof
Let (q0,q) ∈ S3 such that zρ = 0, i.e.,

(q0I−S(q))Wρ q = 0.

If q0 6= 0, it is immediate to see that q0I−S(q) is invertible and thus q = 0, implying that q0 =±1.
If q0 = 0, then S(q)Wρ q = 0. According to the properties of S(q) with q ∈ S2 and using (GEN), it is
clear that q is an eigenvector of Wρ with unit length.

Consider the following positive definite differentiable function V : ϒ→ R+

V = ξ
T

ΓdAdξ +4q̄TWρ q̄+ ω̄
T Jdω̄, (25)

which is radially unbounded over ϒ since Wρ and Jd are positive definite. Moreover, since Γd and
Ad commute, the gain matrix ΓdAd is symmetric block diagonal positive definite.

Theorem 1. Consider the system (3)-(6), under the assumptions in subsection (2.3) and the control
law (22) with the auxiliary system given by (11). Then, under hypothesis (GEN), the following hold

(1) There are eight equilibrium points, given by

Ω
+
1 = (03n,

[
1
0

]
, 0), Ω

−
1 = (03n,

[
−1
0

]
, 0),

Ω
+
i+1 = (03n,

[
0
vi

]
, 0), Ω

−
i+1 = (03n,

[
0
−vi

]
, 0),

with i = 1,2,3 and (v1,v2,v3) is an orthonormal basis diagonalizing Wρ .

(2) All trajectories of (3)-(6) converge to one of the equilibrium points defined in Item (1).

(3) Set c := 4λmin(Wρ), where λmin(Wρ) is the smallest eigenvalue of Wρ , then the equilibrium point
Ω

+
1 is locally asymptotically stable with a domain of attraction containing the set

V+
c := {χ ∈ ϒ |V (χ)< c : and q̄0 > 0} , (26)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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VELOCITY-FREE ATTITUDE STABILIZATION WITH INERTIAL VECTOR MEASUREMENTS 9

and the equilibrium point Ω
−
1 is locally asymptotically stable with a domain of attraction

containing the set
V−c := {χ ∈ ϒ |V (χ)< c and q̄0 < 0} . (27)

(4) The other equilibrium points Ω
±
2,3,4 are hyperbolic and not stable (i.e., the eigenvalues of each

of the corresponding linear systems have non zero real part and at least one of them has
positive real part). This implies that System (3)-(6) is almost globally asymptotically stable
with respect to the two equilibrium points Ω

±
1 in the following sense: there exists an open

and dense subset ϒ0 ⊂ ϒ such that, for every initial condition χ0 ∈ ϒ0, the corresponding
trajectory converges asymptotically to either Ω

+
1 or Ω

−
1 .

Proof
Regarding Item (1), one must solve the equation f (χ) = 0, where f is the nonlinear function
describing (24). Two cases can be considered. Assume first that q̄0 6= 0. Both matrices q̄0I+S(q̄) and
q̄0I−S(q̄) are non singular. Therefore, from the third equation of (24) ω̄ = 0 and thus ξ = 03n from
the first equation of (24). The fourth equation of (24) reduces to zρ = 0 and one concludes that q̄ = 0

and q̄0 =±1 leading to two equilibrium points : Ω
+
1 = (03n,

[
1
0

]
, 0) and Ω

−
1 = (03n,

[
−1
0

]
, 0).

Now, assume that q̄0 = 0. Then ‖q̄‖= 1 and according to the third equation of (24), it is clear that
ω̄ is parallel to q̄, let say ω̄ = µ q̄ and then µ must be equal to zero according to the second equation
of (24), implying that ω̄ = 0. As in the previous case, one deduces that ξ = 03n. From the fourth
equation of (24) one can conclude that q̄ and Wρ q̄ are parallel, leading to the six points Ω

±
2,3,4.

Regarding Item (2). Using the facts that

ω̄
T S(ω̄) = 0, q̄TWρ(q̄0I +S(q̄))ω̄ = ω̄

T (q̄0I−S(q̄))Wρ q̄, ω̄
T BT

d Γdξ = ξ
T

ΓdBdω̄,

the time derivative of (25) in view of (24) yields

V̇ =−ξ
T

Λξ ≤ 0, (28)

with Λ = AT
d ΓdAd +ΓdA2

d = 2ΓdA2
d symmetric positive definite. Therefore, all trajectories of (24)

are defined for all times and bounded.
Since (24) is autonomous and V is radially unbounded, one can use LaSalle’s invariance theorem.

Therefore every trajectory converges to a trajectory γ along which V̇ ≡ 0. Then ξ must be identically
equal to zero, implying at once that Bdω̄ ≡ 0 as well. The latter assertion yields that ω̄ must be
collinear to all the bi’s, which can be true only if ω̄ ≡ 0 since there are at least two non-collinear
vectors bi. From the fourth equation of (24) one can conclude that zρ = 0 leading to the conclusion
by Lemma 2.

Next Item (3) is addressed. The proof is provided only for Ω
+
1 since the other case is entirely

similar. Take an initial condition χ̄ in V+
c . Since V is non increasing, V (χ)< c for all times and, for

every t ≥ 0, q̄(t)TWρ q̄(t)≤ λmin(Wρ). This implies that ‖q̄(t)‖< 1 for every t ≥ 0 and thus q̄0(t) 6= 0
for every t ≥ 0. One can deduce that q̄0(t) keeps the same sign namely that q̄0(0), which is positive.
Since the trajectory converges to one of the eight equilibrium points, it must be Ω

+
1 since this is the

only one contained in V+
c .

Finally, the proof for Item (4) is deferred to Appendix A.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
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10 L. BENZIANE ET AL.

Remark 1. Denote by Ψ ⊂ ϒ the set composed of the union of stable manifolds of the unstable
equilibria Ω

±
j , j = 2,3,4. Therefore, for every initial condition χ0 ∈Ψ , the corresponding trajectory

converges to one of the unstable equilibrium points Ω
±
j , j = 2,3,4.

5. CONTROL GAINS TUNING AND SIMULATION RESULTS

This section provides an optimization procedure for the control gains tuning. Let χ =

(

[
b̃1

b̃2

]
, Q, ω), where only two non-collinear vectors b1 and b2 were considered. For simplicity

and without loss of generality Rd = I, which means that q̄ = q, ω̄ = ω and bd
i = ri. The matrices

Λ1, Λ2 are chosen diagonal such as Λi = diag(γi1,γi2,γi3) where i = 1,2, therefore the matrices A1

and A2 will be Ai = ai0I + ai1Λi + ai2Λ2
i where i = 1,2. The inertial reference vectors are taken as

r1 = [0, 0, 1]T and r2 = [0.4348, 0.0008, 0.9005], and the inertia matrix is selected from [35]

J =

 10 1.2 0.5
1.2 19 1.5
0.5 1.5 25

 (Kg.m2),

and the simulation sampling time is 0.01s with ode5 solver.

5.1. Parameters Tuning

Consider the closed-loop dynamics is given by (24), and consider the case where only two non-
collinear inertial vectors r1, r2 are used. Consider now an objective function g(κ), where κ

is the vector of all parameters to be tuned. The goal is to find min
κ
(g(κ)) with the following

constraint l(κ(·))≤ κ(·)≤ u(κ(·)) , where κ = [ ρ1 ρ2 a1( j−1) a2( j−1) γ1 j γ2 j ]T , ( j =

1, . . . ,3, κ ∈ (R∗+)
14

) is the vector of parameters, l(κ(·)) and u(κ(·)) are the lower and upper bounds
corresponding to each parameter and κ(·) is an element of κ .

Usually, existing optimization algorithms find a local optimum and there effectiveness depends
on the lower and upper limits. These last values can be determined based on the dominant poles of
the linearized system around the stable equilibrium point.

The linearization of (24) at Ω
+
1 = (06,

[
1
0

]
, 0) can be written as follows


żξ = −Azξ +Gzω ,

żq = 1
2 zω ,

Jżω = −GT ΓAzξ −2Wρ zq,

(29)

where G =
[

GT
1 GT

2

]T
with Gi = S((I− 2q0S(q)+ 2S2(q))ri)|Ω+

1
= S(ri), Γ and A are defined

in subsection 3.1 and Wρ is defined in (20). Setting Z = (zT
ξ
, zT

q , zT
ω)

T where zξ ∈ R6, zq ∈ R3 and
zω ∈ R3 are the linearized vectors of ξ , q, ω , respectively. Then system (29) can be rewritten as
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Ż = BZ, where

B =

 −A 06×3 G
03×6 03 I/2

−J−1GT ΓA −2J−1Wρ 03

 .
Note that the fact that żq0 = 0 was used. The linearization of the closed loop dynamics is used
to determine the upper and the lower limits u(κ(·)), l(κ(·)) respectively. An arbitrary initial

condition Q(0) =
[

0.7212, 0.3999, −0.3999, 0.3999
]T

is selected and for an arbitrary chosen
fixed κ(m), m = 3, . . . ,14 gains values, one can start by varying κ(1) and κ(2). After inspecting the
zero-pole map, one can determine the upper and lower bounds for κ(1) and κ(2) gains based on the
location of the dominant poles, if they exist. The same reasoning gives the values in Table I.

Since there exist many possibilities to select the objective function. Different objective functions
derived from three well known performance indices (see section 5.7 of [36]) were tested. The
first is Integral of Absolute Error (IAE), the second is Integral of Time-weighted Absolute Error
(ITAE) and the last is Integral of Square Error (ISE), with the possibility to minimize energy
and attitude error in the same time by choosing σ ∈ [0 1]. The first conclusion after several
simulations is that the most appropriate objective function for the considered application is the ISE
function gise(κ) =

´
∞

0

(
‖q̄‖2 +σ‖τ‖2

)
dt with σ = 0.1. Initial gains vector are chosen arbitrary as κ0 =

[0.599, 0.586, 0.754, 0.368, 0.015, 5.668, 1.963, 0.099, 2.155, 5.561, 0.021, 5.979, 5.464, 5.954].
To get an idea about the effectiveness of the optimization methods, two methods have been

compared. The first one uses Matlab fmincon function and the second method is based on the use
of the same function with variation of initial conditions of the parameters in a procedure called
global search (see, for instance [37]) because the locality of the solution essentially depends on the
initial conditions. The global search method has been used and the final value κ f inal with criterion
ISE is presented in Table II. The corresponding gain matrices are given in Table III. Note that
the eigenvalues of the obtained matrix Wρ are simple, despite the fact that it is not included as
a constraint in the tuning gains method. Also, during all conducted simulations using two non-
collinear reference vectors no selected set of gains led to multiple eigenvalues of Wρ .

5.2. Simulation results

The impact of the tuned gains on the behavior of the controller are shown in this subsection and
the effectiveness of the proposed controller is illustrated via simulations. Depending on the attitude
initial condition and measurement noise, four cases were selected.

• In the first case, the initial attitude is Q(0) = [0.7212, 0.3999, −0.3999, 0.3999]T without
measurement noise.

• In the second case, the initial attitude is Q(0) = [−0.7212, 0.3999, −0.3999, 0.3999]T

without measurement noise.
• The third case is chosen to be an unstable equilibrium point Q(0) = [0, 0, −1, 0]T without

measurement noise.
• The fourth case uses the same initial condition as the first case, but a White Centered Gaussian

noise with standard deviation of 0.01(normalized) is added to the three elements of vector
measurements b1 and b2. Note that b1 and b2 are not renormalized after the noise has been
added to them.
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In all cases the initial angular velocity is chosen to be ω(0) = [0.005, 0.006, 0.004]T (rad/s).

Remark 2. Special care should be taken when dealing with noisy measurements. In the
forth case the gain parameters are chosen differently, the gains a1( j−1)( j = 1,2,3), ai1(i =
1,2) and ai2(i = 1,2) remain unchanged (see Table II), the selected other gains are
Λ1 = diag([25.7484, 19.4165, 30.6847]), Λ2 = diag([30.4728, 15, 10.8129]) which gives A1 =

diag([3.6, 2.3966, 4.7274]), A1 = diag([3.4217, 1.2048, 0.8271]) and ρ1 = 6.0339, ρ2 = 4.3266.
This choice is justified by the fact that matrices A1 and A2 represent the frequency cutoff of the
auxiliary filters.

The evolution of the unit-quaternion trajectories, angular velocity and applied torques with respect
to time for the proposed controller in case 1 are presented in Figure 1, where the trajectories
converge asymptotically to the equilibrium point Ω

+
1 . Figure 2 illustrates simulation results in case

2, where it is clear that the proposed controller avoids the unwinding phenomenon. In this case
the trajectories converge asymptotically to the equilibrium point Ω

−
1 . Note that, in the third case,

even if the initial condition is a theoretical unstable equilibrium point, by simulation, numerical
errors push the trajectories away from this point as depicted in Figure 3. Figure 4 show that the
presence of measurement noise does not affect the convergence of quaternion trajectories to the
stable equilibrium point.
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Figure 1. Simulation results for case 01

6. CONCLUSIONS

An attitude stabilization controller has been proposed, in which neither the angular velocity nor the
attitude are used in the feedback. This controller could be of great help (as a main or a backup)
controller in applications where prone-to-failure and expensive gyroscopes are used. Most existing
velocity-free attitude stabilization schemes use directly the attitude in the feedback. However, an
efficient recovery of the attitude requires the use of the angular velocity together with inertial vector
measurements. The proposed velocity-free control schemes does not require the reconstruction of
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Figure 2. Simulation results for case 02
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Figure 3. Simulation results for case 03

the attitude. It mainly uses an auxiliary system that can be considered as an observer-like for the
angular velocity relying only on inertial vector measurements. The proposed controller doesn’t use
the inertial reference vectors, reduces the set of unstable equilibria of the closed loop dynamics
with respect to previously proposed controllers, provides an almost global asymptotic stability of
the desirable equilibrium point and avoids the “unwinding phenomenon”. In addition, it was shown
that if at least two observed vectors are non collinear, then there always exist positive control gains
leading to almost global asymptotic stability results. A nonlinear optimal tuning method has been
used to adjust properly the controller gains.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (0000)
Prepared using rncauth.cls DOI: 10.1002/rnc



14 L. BENZIANE ET AL.

0 20 40 60 80 100 120
−0.5

0

0.5

1

Q

 

 
q0
q1
q2
q3

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

‖
ω
‖
(r
a
d
/
s)

0 20 40 60 80 100 120
0

5

10

15

‖
τ
‖
(N

.m
)

time(s)

Figure 4. Simulation results for case 04

APPENDIX A. PROOF OF ITEM 4 OF THEOREM 1

Proof
First of all notice that the equilibrium points Ω

±
i , i = 2,3,4, cannot be locally asymptotically stable.

Indeed let Ω be one of these points and U any open neighborhood of Ω in ϒ. Define

V−
Ω

:= {χ ∈ ϒ |V (χ)<V (Ω)} ,

and set U− := (V−
Ω
∩U). The set U− is obviously non empty since it contains points of the type

λΩ with |λ | < 1 close enough to 1. Moreover, for every χ ∈U−, the trajectory of (24) does not
converge to Ω since V is non-increasing.

Next it is shown that the linearization of (24) at Ω is hyperbolic and admits an eigenvalue with
positive real part. If q̄0 = 0 then q̄ = σvρ , where σ = ±1 and vρ is an eigenvector of Wρ . Let one
use the following change of variable (cf. [11, 24, 38])

X =

[
x0

x

]
=

[
0
−σvρ

]
�

[
q̄0

q̄

]
= σ

[
vT

ρ q̄
−q̄0vρ −S(vρ)q̄

]
. (30)

From (30) one can have[
q̄0

q̄

]
=

[
0

σvρ

]
�

[
x0

x

]
= σ

[
−vT

ρ x
x0vρ +S(vρ)x

]
. (31)

In the forth equation of (24), the term Ξ =−(q̄0I−S(q̄))Wρ q̄ can be rewritten function of the new
variable. First using the fact that σ2 = 1, Wρ vρ = λρ vρ and S

(
S(vρ)x

)
= S(vρ)S(x)− S(x)S(vρ),
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one can obtain

Ξ = −
((
−vT

ρ x
)

I−S
(
x0vρ +S(vρ)x

))
Wρ

(
x0vρ +S(vρ)x

)
,

= λρ x0vT
ρ xvρ + vT

ρ xWρ S(vρ)x+ x0S(vρ)Wρ S(vρ)x

+
(
S(vρ)S(x)−S(x)S(vρ)

)
Wρ

(
x0vρ +S(vρ)x

)
, (32)

then, using the fact that S2(vρ) = vρ vT
ρ − I, S(vρ)S(x) = xvT

ρ − vT
ρ xI and Wρ vρ = λρ vρ , one has

vT
ρ xvρ = vρ vT

ρ x =
(
S2(vρ)+ I

)
x, S(vρ)S(x)Wρ S(vρ)x = −vT

ρ xWρ S(vρ)x and x0S(vρ)S(x)Wρ vρ =

−λρ x0S2(vρ)x. Finally, using all these identities and (31), (32), one can rewrite (24) function of the
new variable as 

ξ̇ = −Adξ +Bd(X)ω̄,

ẋ0 = − 1
2 xT ω̄,

ẋ = 1
2 (x0I +S(x)) ω̄,

Jd ˙̄ω = −BT
d (X)ΓdAdξ −S(ω̄)Jdω̄

+2(x0I−S(x))
(
λρ I +S(vρ)Wρ S(vρ)

)
x.

(33)

It is known that the tangent space of S3 at

[
1
0

]
is given by the equation y0 = 0 (with

y = (y0, y1, y2, y3) ∈ R4) and the linearization of system (33) at Ω = (ξ , X , ω̄) = (03n,

[
1
0

]
, 0)

is given by

Ż = A Z, with A =

 −Ad 03n×3 H
03×3n 03 I/2

−J−1
d HT ΓdAd 2J−1

d G 03

 ,
where Z = (zT

ξ
, zT

x , zT
ω)

T with zξ , zx, zω are the linearized vectors of ξ , x, ω̄ , respectively. The matri-

ces G = λρ I +S(vρ)Wρ S(vρ) and H =
[

HT
1 · · · HT

n

]T
with H j = S

((
I +2S2

(
vρ

))
Rdbd

j

)
.

Since Ω is not locally asymptotically stable, it is enough to show that A does not admit any
eigenvalue with zero real part. Reasoning by contradiction, thus assume that A has an eigenvalue
il, i2 =−1, l ≥ 0, with Zl = (zT

1 ,z
T
2 ,z

T
3 )

T ∈ C3n+6 a corresponding eigenvector. One gets the linear
system of equations 

−Adz1+ Hz3 = i lz1,

z3/2 = i lz2,

−J−1
d HT ΓdAdz1+ 2J−1

d Gz2 = i lz3.

(34)

If l = 0, one gets z3 = z1 = 0 (since Ad is positive definite) and J−1
d Gz2 = 0. Recalling that Wρ is

real symmetric with distinct eigenvalues, one can have that

Wρ = λρ vρ vT
ρ +λ1v1vT

1 +λ2v2vT
2 ,
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where (vρ ,v1,v2) is an orthonormal basis of R3 made of eigenvectors of Wρ . By using the properties
of S(vρ), one gets

G = λρ vρ vT
ρ +(λρ −λ2)v1vT

1 +(λρ −λ1)v2vT
2 ,

implying that det(G) = λρ(λρ−λ1)(λρ−λ2) 6= 0 and thus z2 = 0. Then the eigenvector Z is equal to
zero, which is impossible. Therefore, l > 0 and one deduces that z1 = (Ad + i lI3n)

−1Hz3, z2 =− i
2l z3

and
(i(Jd l +G/l)+HT

ΓdAd(Ad + i lI3n)
−1H)z3 = 0. (35)

One has HT ΓdAd(Ad + i lI3n)
−1H = ∑

n
j=1(R

T
d H j)

T Λ jA j(A j + ilI)−1(RT
d H j). For j = 1, . . . ,n, let

(v j1,v j2,v j3) be an orthonormal basis diagonalizing Λ j and V the corresponding orthonormal matrix
such that Λ j = VjL jV T

j , where L j = diag(λ j1, λ j2, λ j3) with λ jk ∈ R∗+, j = 1, . . . ,n, k = 1,2,3.
Therefore, Pj(Λ j) =VjPj(L j)V T

j , where Pj(L j) = diag(Pj(λ j1), Pj(λ j2), Pj(λ j3)).
Recall that A j = Pj(Λ j), j = 1, . . . ,n where Pj is a positive polynomial of degree two on R∗+, one

deduces that

Λ jA j(A j + ilI)−1 = Λ jPj(Λ j)(Pj(Λ j)+ ilI)−1

= VjL jPj(L j)(Pj(L j)+ ilI)−1V T
j

=
3

∑
k=1

λ jkPj(λ jk)

Pj(λ jk)+ il
w jkwT

jk, (36)

where we used the results on functions of matrices of Chapter 6 and section 6.2 in [39].
Multiplying Eq. (35) on the left by (z∗3)

T and using Eq. (36), yields

i(z∗3)
T (lJd +G/l)z3 +

n

∑
j=1

3

∑
k=1

λ jkPj(λ jk)(Pj(λ jk)− il)
Pj(λ jk)2 + l2 ((T ∗j )

T w jk)(wT
jkTj) = 0,

where l > 0, Tj =V T
j RT

d H jz3 for j = 1, . . . ,n and T ∗j is the conjugate of the complex vector Tj. Since
(z∗3)

T (lJd +G/l)z3 is a real number, one gets by taking the real part of Eq. (36)

n

∑
j=1

3

∑
k=1

λ jkPj(λ jk)
2

Pj(λ jk)2 + l2

∣∣wT
jkTj
∣∣2 = 0, (37)

where |·| denotes the mdulus of a complex number. One deduces at once that Tj = H jz3 = 0 for
j = 1, . . . ,n. Since two vectors bd

j are not colinear, one gets that z3 = 0 and finally Z = 0, which is
again a contradiction.

If A does not have eigenvalues with positive real part, it would have only eigenvalues with
negative real part and thus A would be Hurwitz, implying that (24) would be locally asymptotically
stable with respect to Ω. Since this is not true, A does admit at least one eigenvalue with positive
real part. Thus, there exists an unstable manifold of dimension at least one in neighborhoods of the
Ω
±
j , j = 2,3,4, and since all trajectories converge to an equilibrium point, therefore (24) is almost

globally asymptotically stable with respect to the two equilibrium points Ω
±
1 .
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gains l(κ(m)) u(κ(m))

ρi(i = 1,2) 4 17
ai0(i = 1,2) 0.1 0.5
ai1(i = 1,2) 0.001 0.05
ai2(i = 1,2) 0.00001 0.005

γi j(i = 1,2, j = 1,2,3) 20 120
Table I. Lower and upper limits

gains ISE gise(κ) =
´

∞

0

(
‖q̄‖2 +0.1‖τ‖2

)
dt

ρi(i = 1,2) [9.0339, 7.3266 ]
a1( j−1)( j = 1,2,3) [0.4061, 0.0365, 0.0034]
a2( j−1)( j = 1,2,3) [0.2898, 0.0205, 0.0027]

γ1 j( j = 1,2,3) [30.7484 104.4165 93.6847]
γ2 j( j = 1,2,3) [93.4728, 20, 106.8129]

Table II. Selected optimal gain values

parameters values calculated with ISE criterion

Λ1 diag([30.7484 104.4165 93.6847])
Λ2 diag([93.4728, 20, 106.8129])
A1 diag([4.7430 41.2868 33.6668])
A2 diag([25.7963 1.7798 33.2838])

Wρ

[
14.9750 −0.0025 −2.8686
−0.0025 16.3601 −0.0053
−2.8686 −0.0053 1.3851

]

eigenvectors vρ1 =±

[
0
−1
0

]

of Wρ vρ2 =±

[
0.9801
0.0018
−0.1984

]
, vρ3 =±

[ −0.1984
−0.0004
−0.9801

]
eigenvalues λρ1 = 16.3601, λρ2 = 15.5558

of Wρ λρ3 = 0.8044
Table III. Gain matrices
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