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Abstract

The key challenge of future mobile communication networks is to strike an attractive compromise

between the wireless network’s area spectral efficiency and energy efficiency. This necessitates new

approaches to wireless system design, embracing a rich body of existing knowledge - especially in the

field of Multiple-Input-Multiple-Output (MIMO) techniques. Hence in this chapter, we describe Spatial

Modulation (SM), which constitutes a promising new concept of wireless system design conceived

for reducing the number of high-cost RF front-ends compared to other MIMO implementations. The

concept of SM has recently established itself as a beneficial transmission paradigm, subsuming numerous

members of the MIMO system-family. Research activities on SM have reached sufficient maturity to

motivate its comparison against state-of-the-art MIMO systems, as well as to inspire its application in

emerging wireless communication systems. Furthermore, it has received sufficient research attention to

motivate its implemention in testbeds and it holds the promise of stimulating further vigorous inter-

disciplinary research in the years to come, especially in the emerging market of the Internet of Things

(IoT).

Index Terms
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Multiple-antenna systems, spatial modulation, few-RF multiple-antenna design, cellular networks,

connected objects.

I. INTRODUCTION

It is widely recognized that the Long Term Evolution (LTE) is the de facto physical-layer

standard of fourth generation (4G) cellular networks [1], [2]. The power consumption of the

Information and Communication Technology (ICT) sector in the next decade will highly depend

on the Energy Efficiency (EE) of this physical-layer standard [3], [4]. At the current stage,

however, the LTE standard may be deemed to be conceived, designed and optimized based on

the Spectral Efficiency (SE), with limited consideration of the associated EE issues [5]. Hence the

primary focus has been on achieving high data rates, without giving much cognizance to EE and

to the implementation complexity, especially at the physical-layer. This approach, unfortunately,

is no longer acceptable for future services relying on cellular networks. The recent research

efforts and the decision to standardize a new narrow-band radio technology for the Internet of

Things (IoT) confirm this paradigm change. The new radio access network standard is known as

the Narrow-Band IoT (NB-IoT) recommendation, which is expected to provide improved indoor

coverage, to support a massive number of low-throughput devices, to guarantee a limited delay,

to facilitate a low device cost as well as power consumption and so on [6]. This technology is

expected to operate “in-band”, relying on the resource blocks of a standard LTE carrier, or in

the unused resource blocks within a LTE carrier’s guard-band, or in a “stand-alone” mode for

emloyment in dedicated spectrum.

The operational LTE physical-layer standard relies on Multiple-Input-Multiple-Output (MIMO)

techniques for enhancing the SE and for reducing the transmit power [7], [8]. MIMO aided

techniques will undoubtedly find their way into the fifth generation (5G) of mobile services

and applications. In emerging IoT applications, on the other hand, the so-called connected

objects are expected to require modest data rates, a low power consumption, and a smaller

form factor compared to those of typical mobile multi-media services. By contrast, they are

expected to support higher data rates at a higher power consumption, and at a more bulky form

factor compared to typical wireless sensor networks. Hence, new air-interface techniques have

to be developed, which are capable of satisfying these new emerging requirements. Clearly,

MIMO transmission and reception schemes will continue to play a vital role in these emerging
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application scenarios, in light of their inherent design flexibility. However, new MIMO paradigms

are necessary.

In simple terms, the capacity of MIMO systems is proportional to min{Nt, Nr}, where Nt and

Nr represent the number of transmit and receive antennas. This implies that the throughput may

be increased linearly with the number of antennas. As a consequence, MIMO techniques can

provide high data rates without any bandwidth-expansion and without increasing the transmit

power [7]. However, in practice, MIMO systems rely on a multiplicity of associated circuits,

such as power amplifiers, RF front-ends, mixers, synthesizers, filters, etc., which substantially

increase the circuit power dissipation of all network elements. More explicitly, recent studies have

clearly shown that the EE gain of MIMO transmission increases with the number of antennas,

provided that only the transmit power is taken into account and their circuit power dissipation

is neglected [9], [10], [11]. On the other hand, the EE gain of MIMO transmission remains

modest and decreases with the number of active transmit antennas, if realistic power consumption

models are considered [12]. These results highlight that the design of energy efficient and low-

complexity MIMO transmission is an open research problem at the time of writing, especially in

the context of IoT applications. In fact, many system parameters have to be considered, such as

the bandwidth, the transmit power, the number of active transmit/receive antennas, the number

of active devices, etc., which all contribute to the fundamental transmit power vs. circuit power

dissipation and multiplexing gain vs. inter-user interference trade-offs. As a result, while the SE

advantages of MIMO transmission are widely recognized, its EE potential is not well understood.

Conventional MIMO transmission takes advantage of all the antennas available at the trans-

mitter, by simultaneously transmitting multiple data streams from all of them. Thus, all transmit

antennas are activated at any time instance. By appropriately choosing the transmission/precoding

matrices, multiplexing (higher data rates) and/or transmit-diversity (better link reliability) gains

can be obtained using MIMO systems. The reason behind this choice is that simultaneously

activating all transmit antennas results in an improved SE [8]. However, unfortunately, this

choice does not lead to optimizing the total EE [12]. In fact, multiple RF chains are required

at both the transmitter and receiver for simultaneously transmitting many data streams, each

of which requires an independent power amplifier that is known to dissipate the majority of

the power consumed [3]. These considerations imply that a major challenge of next-generation

MIMO-aided cellular networks is the design of multi-antenna transmission schemes with a limited
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number of RF front-ends, aiming for reducing the complexity, for relaxing both the inter-antenna

synchronization requirements, the inter-channel interference, as well as the signal processing

complexity and the form factor of the network elements, whilst aiming for improving the SE

compared to single-antenna transmission and for reducing the total power consumption compared

to conventional multiple-antenna aided transmission.

In this context, the design of MIMO transmission schemes that exploit fewer RF chains com-

pared to the number of available radiating elements is currently emerging as a promising research

field [13]. Usually, this family of MIMO designs is referred to as a single-RF MIMO. Suffice

to say, however that there are also various compromise-schemes, which rely on diverse antenna-

selection schemes, where a specific fraction of the antennas is activated, which determines the

number of RF-chains necessitated. Hence in parlance we can refer to these schemes as single-RF,

full-RF and fractional-RF arrangements.

To elaborate a little further, the fundamental idea behind the fractional-RF aided MIMO

schemes is to attain spatial multiplexing and/or transmit-diversity gains with the aid of many

antenna-elements, where only a fraction of the antenna-elements - or possibly just a single

antenna-element - is activated at the transmitter at any modulation instant. The rationale behind

the full-RF to fractional-RF paradigm shift in MIMO design originates from the consideration that

multiple transmit antennas (radiating elements) may be accommodated at both the transmitters

and receivers, bearing in mind that the complexity and power consumption/dissipation of MIMO

transmission is mainly determined by the number of simultaneously active transmit antennas,

i.e., by the number of RF chains [9], [10].

Fueled by these considerations, SM has recently established itself as a promising transmission

concept, which belongs to the fractional-RF MIMO wireless system family, whilst exploiting the

availability of multiple antennas in a novel fashion compared to state-of-the-art high-complexity

and power-hungry classic MIMO systems [14]. In simple terms, SM can be regarded as a MIMO

concept that possesses a larger set of radiating elements than the number of transmit-electronics

chains. SM-MIMO takes advantage of the entire antenna-array at the transmitter, whilst using

a limited number of RF chains. The main distinguishing feature of SM-MIMO is that it maps

additional information bits onto a “SM constellation diagram”, where each constellation element

is constituted by either a single one or a subset of antenna-elements. These unique characteristics

result in high-rate MIMO implementations relying on a reduced signal processing and circuit
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complexity, as well as an improved EE. Recent analytical and simulation studies have shown that

SM-MIMOs have the inherent potential of outperforming many state-of-the-art MIMO schemes

under the fair assumption that the number of RF chains is the same.

In a nutshell, the rationale behind SM-MIMO communications designed for spectral- and

energy-efficient cellular networks is supported by a pair of main pillars: 1) Given the performance

constraints, they minimize the number of activated antenna-elements in order to increase the EE

by reducing the circuit power consumption and the form factor of the devices; 2) Given the

implementation and size constraints, they maximize the number of radiating antenna-elements

in order to increase both the SE and the EE by reducing the transmit power consumption. This

is realized by capitalizing on the multiplexing gain introduced by mapping additional bits onto

the so-called “SM constellation diagram” constituted by the antennas.

Against this back-drop, in this chapter the concept of SM-MIMO is introduced and its achiev-

able performance in terms of its error probability, signal processing complexity and energy

efficiency is discussed. Finally, experimental results relying on a testbed are illustrated in order

to substantiate the feasibility of this emerging concept.

II. A HISTORICAL PERSPECTIVE

Although SM-MIMO has received widespread attention from the research community only

in the last few years (about 11 papers were available in the open technical literature in 2008),

it is a 14-year old technology. In this section, we briefly describe the history of SM-MIMO

research with a focus on some pioneering papers, where the concept of SM is first proposed and

studied. From this short glimpse into the historical development of SM-MIMO, it is evident that

during the years 2001-2008 various researchers independently developed transmission concepts

closely-related to the SM-MIMO scheme, which were nicknamed with different acronyms.

The “space modulation” principle appeared for the first time in 2001 [15]. This scheme was

termed as Space Shift Keying (SSK) modulation and it exploits the differences in the signals

received from different Transmit Antennas (TAs) to discriminate the transmitted information

messages. In [15], a twin-antenna MIMO setup providing 1 bit-per-channel-use (bpcu) transmis-

sion was investigated. The information bits are encoded by keeping one TA active all the time,

while activating the second TA only for one of the two possible information bits. The authors

also proposed a twin-antenna MIMO setup that combines spatial and binary Phase Shift Keying
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(PSK) modulation, thus providing 2 bpcu transmission. The scheme employs 2-PSK modulation,

when the TAs are active.

A year later in 2002, Haas et al. [16] the authors proposed a multi-antenna modulation scheme,

where a number of bits that is equal to that of the TA-elements is multiplexed in an orthogonal

fashion. A special property of the encoding scheme is that only one out of the available TAs is

active in every channel use. The scheme is developed for 2-PSK modulation and some bits are

used as parity checks. The authors show that it provides the same spectral efficiency as 8-PSK,

but with a better error probability.

Two years later in 2004, Song et al. [17] proposed a modulation scheme termed as the “channel

hopping technique,” which is exactly what is known today as SM-MIMO. The idea is portrayed

in [17, Fig. 1], and it foresees the transmission of two information streams: the first is explicitly

transmitted by using conventional PSK or Quadrature Amplitude Modulation (QAM) and the

second is implicitly transmitted by activating a single TA of the available antenna-array.

In 2005, Mesleh et al. [18] independently proposed the same modulation scheme as in [17].

The main motivation behind [18] is to develop a multi-antenna modulation scheme that avoids

Inter-Antenna Interference (IAI), which is realized by activating a single TA in every channel

use and by implicitly conveying additional information bits using the TA switching process. The

authors also show that the proposed scheme significantly relaxes the signal processing complexity

at the receiver. In 2006, the same authors further investigated the scheme proposed in [18] and

they used for the first time the terminology of “Spatial Modulation” to identify this transmission

mechanism [19], [20], [21], [22].

Two years later in 2008, various papers were published by improving and further investigating

the SM-MIMO concepts presented in the previous years. Yang and Jiao et al. [23] study the

channel capacity, where the parlance of Information Guided Channel Hopping (IGCH) is coined.

It is shown that IGCH provides a better spectral efficiencies than Orthogonal Space Time Block

Codes (OSTBCs). In [24], the SM-MIMO concept introduced in [18], [19], [20], [21], [22] is

comprehensively studied by using a low-complexity two-step demodulator. In [25], the authors

develop the Maximum Likelihood (ML) optimum demodulator for SM-MIMO and they show

that some performance improvements can be expected compared to the sub-optimal demodulator

introduced in [24]. In [26], the SM-MIMO scheme is simplified by generalizing the SSK

concept originally proposed in [15] to arbitrary numbers of TAs. In particular, only the spatial-
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constellation diagram is used to transmit information bits. This encoding scheme is today known

as SSK-MIMO. In [27], a framework is introduced for the performance analysis of SM-MIMO

by using results from ordered statistics. In [28], the authors extend [26] by allowing more than

one TA to be active in every channel use and by encoding the information bits onto various

combinations of multiple active TAs. They show that for the same number of TA-elements the

rate can be improved at the cost of increasing the number of RF chains, whilst tolerating some

performance loss. This modulation scheme is referred to as Generalized SSK (GSSK).

More recently, in [29], [30], [31], [32], [33] the issue of fast RF switching has been addressed in

the context of SM/SSK, which is a major practical implementation challenge of these techniques.

Due to the specific encoding mechanism of SM/SSK, the active transmit antenna is switched at

each new channel use, which requires an RF switch operating at the symbol rate. While fast RF

switches with low insertion loss and with good isolation properties are available in the literature

for a wide range of frequency bands, high-speed RF switches still constitute a critical part of the

transmitter design [34]. To this end, single-RF MIMO systems have been implemented using the

concept of reconfigurable antennas (RAs). Indeed, the implementation of SM/SSK using a single

RA with multiple transmission states allows for replacing the switching amongst RF chains by

a switching operation amongst antenna states. The latter process is associated with modifying

the surface current distribution within the RA and thus it is associated with a lower complexity

and lower cost than switching amongst RF chains during each transmission period.

At the time of writing, research on SM-MIMO is well established and hundreds of research

contributions are available in the open technical literature. The interested readers are invited to

consult recent survey papers in this field of research [14], [34], [35], [36], [37].

III. OPERATING PRINCIPLE

A. How It Works

In this section, we introduce the SM-MIMO concept illustrating it with the aid of some

simple examples. We denote by Nt and Nr the number TAs and Receive Antennas (RAs),

respectively. The cardinality of the signal-constellation diagram is denoted by M . Either PSK or

QAM are considered. In general, Nt, Nr and M can be chosen independently of each other. At

the receiver, ML-optimum demodulation is considered. Thus, Nr can be chosen independently

of Nt [7]. For ease of presentation, we assume Nt = 2nt and M = 2m with nt and m being
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Fig. 1. Illustration of three MIMO concepts: (a) spatial-multiplexing; (b) transmit-diversity; and (c) spatial modulation.

Reproduced with permission from [34].

two positive integers. For ease of illustration, a single RF front-end is supposed to be available

at the transmitter (single-RF MIMO).

In Fig. 1, the SM-MIMO concept is illustrated for Nt = M = 2 and it is compared to the

conventional Spatial Multiplexing (SMX) scheme [7, Sec. II] and to the OSTBC scheme designed

for transmit-diversity [7, Sec. III]. In the latter case, the Alamouti scheme is considered as an

example [38].

1) In SMX-MIMO, two PSK/QAM symbols (S1 and S2) are simultaneously transmitted from

a pair of TAs in a single channel use. For arbitrary Nt and M , the rate of SMX is

RSMX = Nt log2 (M) bpcu [7, Sec. II].

2) In OSTBC-MIMO, two PSK/QAM symbols (S1 and S2) are first encoded and then simul-
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taneously transmitted from a pair of TAs in two channel uses. For arbitrary Nt and M ,

the rate of OSTBC is ROSTBC = Rc log2 (M) bpcu, where Rc = NM/Ncu ≤ 1 is the rate

of the space-time block code and NM is the number of information symbols transmitted in

Ncu channel uses [7, Sec. III], [39]. If, as shown in Fig. 1, the Alamouti code is chosen,

then we have Rc = 1 [38].

3) In SM-MIMO, only one (S1) out of the two symbols is explicitly transmitted, while the

other symbol (S2) is implicitly transmitted by determining the index of the active TA in

each channel use. In other words, in SM-MIMO the information symbols are modulated

onto two information carrying units: 1) a PSK/QAM symbol; and 2) a single active TA

via an information-driven antenna-switching mechanism. For arbitrary Nt and M , the rate

of SM is RSM = log2 (M) + log2 (Nt) bpcu [14], [24].

In Fig. 2 and Fig. 3, the encoding principle of SM-MIMO is illustrated for Nt = M = 4

by considering two generic channel uses, where the concept of “SM or spatial-constellation

diagram” is also introduced. The rate of this MIMO setup is RSM = log2 (M) + log2 (Nt) = 4

bpcu, hence the encoder processes the information bits in blocks of 4 bits each. In the first

channel use shown in Fig. 2, the block of bits to be encoded is “1100”. The first log2 (Nt) = 2

bits, “11,” determine the single active TA (TX3), while the second log2 (M) = 2 bits, “00,”

determine the transmitted PSK/QAM symbol. Likewise, in the second channel use shown in

Fig. 3, the block of bits to be encoded is “0001”. The first log2 (Nt) = 2 bits, “00,” determine

the single active TA (TX0), while the second log2 (M) = 2 bits, “01,” determine the transmitted

PSK/QAM symbol.

The illustrations shown in Fig. 2 and Fig. 3 highlight a pair of unique characteristics of

SM-MIMO:

1) The activated TA may change every channel use according to the input information bits.

Thus, TA switching is an effective way of mapping the information bits to TA indices and

of increasing the transmission rate.

2) The information bits are modulated onto a three-dimensional constellation diagram, which

generalizes the known two-dimensional (complex-valued) signal-constellation diagram of

PSK/QAM modulation schemes. The third dimension is provided by the antenna-array,

where some of the bits are mapped to the TAs. Again, in SM-MIMO research, this third
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Fig. 2. Illustration of the three-dimensional encoding of spatial modulation (first channel use) Reproduced from [34] with

permission.

dimension is often termed as the “spatial-constellation diagram” [14].

In simple mathematical terms, the signal model of SM-MIMO, assuming a frequency-flat

channel model, is as follows:

y = Hx+ n (1)

where: i) y ∈ C
Nr×1 is the complex received vector; ii) H ∈ C

Nr×Nt is the complex channel

matrix; iii) n ∈ C
Nr×1 is the complex Additive White Gaussian Noise (AWGN) at the receiver;

and iv) x = es ∈ C
Nt×1 is the complex modulated vector with s ∈ M ⊆ C

1×1 being the

complex (scalar) PSK/QAM modulated symbol belonging to the signal-constellation diagram

and e ∈ A being the Nt× 1 vector belonging to the spatial-constellation diagram A as follows:

et =











1 if the t− th TA is activated

0 if the t− th TA is not activated
(2)
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Fig. 3. Illustration of the three-dimensional encoding of spatial modulation (second channel use) Reproduced from [34] with

permission.

where et is the tth entry of e for t = 1, 2, . . . , Nt. In other words, the points (Nt-dimensional

vectors) of the spatial-constellation diagram are the Nt unit vectors of the natural basis of the

Nt-dimensional Euclidean space.

If Nt = 1, SM-MIMO reduces to conventional single-antenna communications, where the

information bits are encoded only onto the signal-constellation diagram. In this case, the rate

is R0 = log2 (M). On the other hand, if M = 1 the information is encoded only onto the

spatial-constellation diagram by providing a rate equal to RSSK = log2 (Nt). In the literature,

this transmission scheme is known as SSK modulation [26]. In particular, SSK modulation

is a MIMO scheme, where data transmission takes place only through the information-driven

TA switching mechanism. It is apparent that SM-MIMO can be viewed as the combination of

single-antenna PSK/QAM and SSK-MIMO modulations.
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Fig. 4. Why it works (encoding). Reproduced from [14] with permission.

B. Why It Works

From Section III-A, we have learned that the fundamental operational principle of SM-MIMO

relies on transmitting part of the information bits via an implicit information-driven antenna-

switching mechanism. In this section, we provide some insights on how the receiver becomes

capable of retrieving the information bits encoded into the TA-indices. This, in fact, showcases

the underlying “essence” that equips SM-MIMO with its innate properties. Let us consider

Figs. 4-6, which illustrates the bit-to-symbol mapping and the transmission process through the

communication channel as well as the decoding process of SM-MIMO transmission, respectively.

Figure 4 is similar to Figs. 2 and 3, but Nt = 4 and M = 2 are considered for ease of

illustration. Let “101” be the triplet of bits at the input of the SM modulator. Then, the TA-

element TX2 is activated and the “-1” PSK bit is transmitted from it.

The signal emitted by the active TA then traverses through a generic wireless channel, whose

channel impulse responses are illustrated in Fig. 5. Owing to the different spatial locations

occupied by the TAs in the antenna-array, the signal transmitted by the active TA experiences

different propagation conditions due to the different dispersive and reflecting environmental

objects along any transmitter-to-receiver wireless links. As such, the same “-1” PSK symbol
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Fig. 5. Why it works (communication channel). Reproduced from [14] with permission.

Fig. 6. Why it works (decoding). Reproduced from [14] with permission.

emitted by the TA-element TX2 travels through a communication channel, which introduces a
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specific “channel signature or fingerprint,” i.e., the channel impulse response, that makes it unique

compared to the same symbol emitted by any other TAs. This constitutes the fundamental essence

of SM-MIMO: the more different the channel signatures/fingerprints are from each other, the

simpler it becomes to distinguish the signals at the receiver. In simple terms, the communication

channel may be deemed to play, especially for SSK-MIMO, the role of a “modulation unit,”

where the channel impulse responses are the actual messages being transmitted.

At the receiver, the demodulation unit exploits the unique fingerprint introduced by the

wireless channel for retrieving the information bits. This is illustrated in Fig. 6, where a coherent

demodulation scheme based on the minimum Euclidean distance is considered [25]. The receiver

is assumed to be aware of the Nt channel impulse responses, however the actual channel impulse

response that is received in each channel use depends on the index of the active TA. The

demodulator performs an exhaustive search among all the possible combinations of channel

impulse responses and modulation symbols, and makes a decision in favor of the hypothesis

associated with the lowest Euclidean distance. In a nutshell, due to the information-driven

antenna-switching mechanism of SM-MIMO transmission, the Nt channel impulse responses

become part of the search space of the hypothesis-testing problem solved by the receiver.

Based on the estimated channel impulse response, the demodulator is capable of retrieving

the information bits associated with it. In summary, the essence of SM-MIMO transmission is

all about exploiting the TA-specific property of the wireless channel, i.e., the uniqueness of each

transmit-to-receive wireless link, for data communication.

IV. ACHIEVABLE PERFORMANCE

In this section, we illustrate some numerical examples showing the achievable performance

of SM-MIMO in terms of its bit error probability, signal processing complexity and energy

efficiency.

In Fig. 7, the bit error probability of SM-MIMO is illustrated. The setup encompasses a

MIMO transmission channel with independent and identically distributed Rayleigh fading. The

receiver is equipped with Nr receive antennas and the transmitter is configured with a single RF

front-end. The target data rate is 8 bpcu. The modulation scheme and the number of transmit

antennas Nt are chosen accordingly. In addition, SM-MIMO is compared against SMX-MIMO

that is configured for achieving the same data rate. The figure shows that SM-MIMO is capable



WILEY ENCYCLOPEDIA OF THE IEEE 14

Fig. 7. Bit Error Probability. Reproduced from [40] with permission.

of providing better error performance than SMX-MIMO, under the assumption that a sufficient

number of antenna-elements is available at the transmitter. Furthermore, this is achieved by using

fewer RF front-ends than SMX-MIMO.

In Fig. 8, the signal processing complexity of SM-MIMO demodulation is illustrated. The same

setup as in Fig. 7 is used. In particular, the demodulator is based on the Sphere Decoding (SD)

principle [40] and it is shown in terms of the number of complex-valued operations with respect

to the baseline ML-optimum demodulator. The figure points out that SM-MIMO is capable of

offering a significant reduction of the signal processing complexity with respect to SMX-MIMO.

In Fig. 9, the EE potential of SM-MIMO is illustrated and compared against SMX-MIMO,

OSTBCs (3/4 code rate) and Multiple-Input-Single-Output (SIMO) transmission for transmit-
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Fig. 8. Demodulation complexity. Reproduced from [40] with permission.

diversity. The EE expressed in bits/Joule is computed as the ratio between the channel capacity

and the total power supply that includes both the RF and circuit power consumption. The

setup encompasses a MIMO transmission channel with independent and identically distributed

Rayleigh fading and four antennas at the transmitter (Nt = 4). The numerical results clearly

highlight the EE potential of SM-MIMO compared to the other MIMO transmission schemes,

especially for medium throughput. As for high throughput, there is an intercept point between the

curves of SM-MIMO and SMX-MIMO, which is due to the limited number of TAs (only four)

that is used for SM-MIMO. Increasing the number of TAs would result in further increasing the

EE without the need of increasing the number of RF front-ends.

In summary, Figs. 7, 8 and 9 show that SM has the inherent potential of simultaneously
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Fig. 9. Energy efficiency. Reproduced from [41] with permission.

reducing the error probability, the signal processing complexity and the power consumption of

MIMO transmission. This win-win effect makes SM-MIMO a suitable candidate for emerging

cellular-based NB-IoT applications [42] and realizable large-scale MIMO systems [43]. Further

comparisons between SM-MIMO and state-of-the-art MIMO systems are available in [44]-[52].

V. TESTBED IMPLEMENTATION

In this section, we briefly describe the world’s first experimental assessment of SM-MIMO

transmission with the aid of a testbed operating in an indoor propagation environment.

A. Transmission Chain

The transmission chain used in the testbed setup is shown in Fig. 10, which is constituted by

hardware and software parts. The hardware consists of a National Instruments (NI)-PXIe-1075

chassis at the transmitter (PXIe-Tx) and another NI-PXIe-1075 chassis at the receiver (PXIe-

Rx), each equipped with the relevant NI modules [53]. The software carries out the digital
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Hardware

Fig. 10. Illustration of the hardware and software testbed setup. Reproduced from [54] with permission.

signal processing at the transmitter (DSP-Tx) and at the receiver (DSP-Rx). At the transmitter,

the binary data is processed by the DSP-Tx block before being transmitted through the channel

by the PXIe-Tx. At the receiver, the PXIe-Rx records the RF signal and outputs it to the DSP-Rx,

where the original data stream is recovered.

B. Hardware Testbed

Both the NI-PXIe-1075 chassis of the transmitter and of the receiver are equipped with a 1.8

GHz Intel-i7 processor relying on 4 GB RAM. The system has two TAs and two RAs. Each

TA and RA contains two quarter-wave dipoles, and a half-wave dipole placed in the middle. All

three dipoles are vertically polarized. Additionally, each antenna has a peak gain of 7 dBi in the

azimuth plane, with an omnidirectional radiation pattern. The signals are transmitted at a carrier

frequency of 2.3 GHz.

The PXIe-Tx transmitter hardware is composed of three interconnected hardware modules:

1) The NI-PXIe-5450 I/Q signal generator, which is fed with the transmit vector extracted

from the binary file generated in MATLAB using the DSP-Tx encoding algorithm. The

DSP-Tx module is described in Section V-C.

2) The NI-PXIe-5652 RF signal generator, which is connected to the NI-PXIe-5611 frequency

converter, which takes its input signal from the output of the NI-PXIe-5450 I/Q signal

generator.

3) The NI-PXIe-5611 frequency converter, which outputs the analog waveform corresponding

to the binary data at a carrier frequency of 2.3 GHz.
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Fig. 11. Block-diagram of signal processing modules implemented at the transmitter and receiver. Reproduced from [54] with

permission.

Likewise, the PXIe-Rx receiver hardware is composed of three interconnected hardware mod-

ules:

1) The NIPXIe-5601 RF down-converter, which is used for detecting the analog RF signal

from the RAs.

2) The NI-PXIe-5652 on-board reference clock, which is used for synchronization.

3) The NI-PXIe-5622 IF digitizer, which applies its own bandpass filter and produces the

received binary files that are processed in MATLAB by the DSP-Rx decoding algorithm.

The DSP-Rx module is described in Section V-C.

C. Software Testbed

MATLAB is used for the digital signal processing required both at the transmitter and receiver,

DSP-Tx and DSP-Rx, respectively. DSP-Tx processes the incoming information and generates

a file that can be transmitted by PXIe-Tx. DSP-Rx processes the data received by PXIe-Rx and
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recovers the original binary data stream. The processing algorithms at DSP-Tx and DSP-Rx are

shown in Fig. 11.

The following operations are implemented at the DSP-Tx:

1) The binary data is first split into information segments of appropriate size.

2) The information in each segment is then modulated using SM-MIMO.

3) A pilot signal is incorporated for the sake of channel estimation along with a frequency

offset estimation section.

4) Then, zero-padding is performed, which permits up-sampling of the data, while maintaining

the same signal power. The up-sampling ratio is set to four and the up-sampled data is

passed through a root raised cosine finite impulse response filter with 40 taps and a roll-off

factor of 0.75. A large roll-off factor and a long tap-delay are necessary for ensuring that

the power is focused to a short time window, i.e., for ensuring that only a single antenna

is activated in every channel use.

5) The resultant vector is multiplied by a factor termed as the “Tuning Signal Power” for the

sake of adjusting the desired transmit power required for the information sequence.

6) The frames are created by ensuring that the frame length multiplied by the sampling rate is

less than the coherence time of the channel, which is typically about 7 ms for a stationary

indoor environment. This ensures that all channel estimates generated at the receiver are

valid for the frame duration.

The following operations are implemented at DSP-Rx:

1) The raw data vectors received from the NI-PXIe-5622 digitizer are combined, in order to

form the received matrix for data demodulation.

2) The detector first finds the beginning of the transmitted sequence by using the synchro-

nization sequence (based on an autocorrelation algorithm).

3) The Signal-to-Noise-Ratio (SNR) for each vector is calculated using the “SNR section”.

4) Each raw vector is decomposed into its underlying frames.

5) Each frame is down-sampled and passed through a root raised cosine filter which completes

the matched-filtering.

6) Frequency offset estimation, timing recovery and correction of each frame follow, which

rely on using state-of-the-art algorithms.
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Fig. 12. Illustration of the laboratory setup. Reproduced from [54] with permission.

Fig. 13. Illustration of the measurement setup. The pair of receive and transmit antennas are set 2.2m apart from each other

with a direct line-of-sight. Each pair of antennas is 1.5m above the ground floor. The spacing between the antennas in either

pair is 10 cm, which corresponds to 0.77 times the wavelength at 2.3GHz. Reproduced from [54] with permission.

7) The pilot signal is then used for channel estimation.

8) The remaining data, along with the estimated channels, is finally used for recovering the

estimated binary sequence (ML-optimum demodulation).

D. Experimental Evaluation

The physical layout of the experimental setup is shown in Fig. 12, and the relative antenna

spacing is provided in Fig. 13. More particularly, the two TAs and two RAs are identical and are
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Fig. 14. Illustration of the experimental results and comparison with analysis and simulations. Reproduced from [54] with

permission.

placed directly across each other. As such, the channel between the transmitter and receiver has a

strong LoS component. Therefore, the transmit-to-receive channel exhibits a Rician distribution

with a high Rician factor due to the short distance between transmitter and receiver. In order to

confirm the Rician distribution and to estimate the Rician factor, some channel measurements are
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collected and studied with the help of the Chi-squared goodness of fit test. These measurements

confirm that the channel is Rician distributed with a Rician factor in the range of 31-38 dB.

To assess the performance of the testbed, some measurements are performed and the error

probability is computed experimentally. Specifically, a stream of 104 information bits is trans-

mitted. This data is split into 50 frames with 200 bits each. To implement coherent detection,

the channel is estimated both at the beginning and at the end of every frame, resulting in 100

CEs per transmission. The experiment is repeated 1000 times for every SNR point and the

error probability is computed. The results are shown in Fig. 14. A good agreement between the

experiments and both the Monte Carlo simulations (“Sim”) and the analytical results (“Ana”) can

be observed. Explicitly, the analytical results are obtained by considering a Rician distribution

with a Rician factor equal to 33 dB and by taking into account some of the associated hardware

imperfections, such as the power imbalance of the RF front-ends. The gap observed at low

SNR can be attributed to a number of practical factors, including the imperfect frequency offset

estimation, timing recovery errors, synchronization problems and inaccurate channel estimation.

In summary, the preliminary results illustrated in this section for a simple (2 × 2)-element

MIMO testbed, including full transmit and reception chains and signal processing algorithms,

confirm that the theoretical gains predicted by the analysis and simulations are substantiated by

measurements performed in a controlled laboratory environment. Further experimental activities

on SM-MIMO are available in [55].

VI. CONCLUSIONS AND RESEARCH OUTLOOK

The emerging market of the IoT requires novel power-efficient and low-complexity MIMO-

aided cellular radio access technologies. This trend will have a profound impact on both the

theory and practice of future cellular networks, which will no longer be purely optimized for

approaching the attainable capacity, but will explicitly include the energy efficiency during

the design and optimization of the entire protocol stack. In this chapter, we have critically

appraised SM, which constitutes a promising transmission concept in the context of MIMO-aided

transmission. We have shown that the SM concept can be beneficially invoked for the design

of medium rate, low-complexity and energy-efficient communication systems by relying on a

limited number of RF chains. Preliminary experimental results substantiating the benefits of SM-

MIMO have also been illustrated. Promising research activities on SM-MIMMO are constituted
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by amalgamating the SM concept with reconfigurable antennas, aiming for the design of cellular

systems supporting low-cost, low-complexity, low-power consumption and medium-throughput

IoT applications [42].

We close this chapter by directing interested readers to a collection of companion tutorial

slides [56] and a tutorial YouTube video [57] on SM-MIMO research.
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