U. J. Aarsnes and O. M. Aamo, Linear stability analysis of selfexcited vibrations in drilling using an infinite dimensional model, Journal of Sound and Vibration, vol.360, issue.6, pp.239-259, 2016.

H. Mounier and L. Greco, Modelling and Structural Properties of Distributed Parameter Wind Power Systems, Proceeding of the 22nd International Symposium on Mathematical Theory of Networks and Systems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01322843

T. Knüppel, F. Woittennek, I. Boussaada, H. Mounier, and S. I. Niculescu, Flatness-based control for a non-linear spatially distributed model of a drilling system. Low Complexity Controllers for Time Delay Systems, Springer series Advances in Delays and Dynamics, 2013.

I. Boussaada, H. Mounier, S. I. Niculescu, and A. Cela, Analysis of drilling vibrations: a time delay system approach. 20th Mediterranean Conference on Control and Automation MED, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00832013

F. Woittennek and H. Mounier, Controllability of networks of spatially one-dimensional second order p.d.e. An algebraic approach, SIAM Journal on Control and Optimization, vol.48, pp.3882-3902, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526143

A. Depouhon and E. Detournay, Instability regimes and selfexcited vibrations in deep drilling systems, Journal of Sound and Vibration, vol.333, issue.7, pp.2019-2039, 2014.

J. K. Hale and S. M. Verduyn-lunel, Introduction to functional differential equations, Applied Mathematics Sciences, vol.99, 1993.

C. Germay, V. Denoël, and E. Detournay, Multiple mode analysis of the self-excited vibrations of rotary drilling systems, Journal of Sound and Vibration, vol.325, issue.1-2, pp.362-381, 2009.

I. Boussaada and S. Niculescu, Tracking the algebraic multiplicity of crossing imaginary roots for generic quasipolynomials: A Vandermonde-based approach, IEEE Transactions on Automatic Control, vol.61, pp.1601-1606, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01425757

, Characterizing the codimension of zero singularities for timedelay systems, Acta Applicandae Mathematicae, vol.145, issue.1, pp.47-88, 2016.

, Computing the codimension of the singularity at the origin for delay systems: The missing link with Birkhoff incidence matrices, 21st International Symposium on Mathematical Theory of Networks and Systems, pp.1-8, 2014.

I. Boussaada, H. Unal, and S. Niculescu, Multiplicity and stable varieties of time-delay systems: A missing link, Proceeding of the 22nd International Symposium on Mathematical Theory of Networks and Systems, pp.1-6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01658365

G. Pólya and G. Szeg?, Series, Integral Calculus, Theory of Functions, vol.I, 1972.

J. Vanbiervliet, K. Verheyden, W. Michiels, and S. Vandewalle, A nonsmooth optimisation approach for the stabilisation of time-delay systems, ESAIM: COCV, vol.14, issue.3, pp.478-493, 2008.

T. Vyhlidal and P. Zitek, Mapping based algorithm for largescale computation of quasi-polynomial zeros, IEEE Transactions on Automatic Control, vol.54, issue.1, pp.171-177, 2009.

T. Mori, N. Fukuma, and M. Kuwahara, On an estimate of the decay rate for stable linear delay systems, International Journal of Control, vol.36, issue.1, pp.95-97, 1982.

N. D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation, Journal of the London Mathematical Society, issue.3, pp.226-232, 1950.

I. Boussaada, S. Tliba, S. Niculescu, H. U. Unal, and T. Vyhlidal, Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system, Linear Algebra and its Applications, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657659

I. Boussaada, S. Niculescu, S. Tliba, and T. Vyhlidal, On the coalescence of spectral values and its effect on the stability of timedelay systems: Application to active vibration control, Procedia IUTAM, vol.22, pp.75-82, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01656723

I. Boussaada, S. Niculescu, and K. Trabelsi, Towards a decay rate assignment based design for time-delay systems with multiple spectral values, Proceeding of the 23nd International Symposium on Mathematical Theory of Networks and Systems, pp.864-871, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01957555

I. Boussaada and S. Niculescu, On the dominancy of multiple spectral values for time-delay systems with applications, To appear in: Proceeding of The 14th IFAC Workshop on Time Delay Systems, pp.1-6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01957523

I. Boussaada, H. Mounier, S. Niculescu, and A. Cela, Analysis of drilling vibrations: A time-delay system approach, Proceedings of The 20th Mediterranean Conference on Control and Automation, pp.1-5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00832013

M. S. Marquez, I. Boussaada, H. Mounier, and S. Niculescu, Analysis and Control of Oilwell Drilling Vibrations, ser. Advances in Industrial Control, 2015.

A. Ghasemloonia, D. G. Rideout, and S. D. Butt, A review of drillstring vibration modeling and suppression methods, Journal of Petroleum Science and Engineering, vol.131, pp.150-164, 2015.

H. Henneuse, Surface detection of vibrations and drilling optimization: field experience, Proceedings of IADC/SPE Drilling Conference, pp.409-423, 1992.

W. Michiels and S. I. Niculescu, Stability and stabilization of time-delay systems: an eigenvalue-based approach, Advances in Design and Control, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02182427

J. M. Kamel and A. S. Yigit, Modeling and analysis of stick-slip and bit bounce in oil well drillstrings equipped with drag bits, Journal of Sound and Vibration, vol.333, pp.6885-6899, 2014.

H. K. Khalil, Nonlinear systems, 2002.

R. I. Leine, Literature survey on torsional drillstring vibrations, Division of Computational and Experimental Mechanics, 1997.

J. S. Mason and B. M. Sprawls, Addressing BHA whirl: the culprit in mobile bay, SPE Drilling and Completion, vol.13, issue.4, pp.231-236, 1998.

V. Rasvan, A method for distributed parameter control systems and electrical networks analysis, Rev. Roumaine Sci. Techn. Serie Electrotechn. Energ, vol.20, pp.561-566, 1975.

B. Saldivar, T. Knüppel, F. Woittennek, I. Boussaada, H. Mounier et al., Flatness-based control of torsional-axial coupled drilling vibrations, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123670

J. Zhou and M. Krstic, Predictor control for stabilizing pressure in a managed pressure drilling system under time delay, Journal of Process Control, vol.40, pp.106-118, 2016.

C. Sagert, F. Di-meglio, M. Krstic, and P. Rouchon, Backstepping and flatness approaches for stabilization of the stick-slip phenomenon for drilling, IFAC Symposium on System Structure and Control, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873605

M. B. Saldivar, S. Mondié, H. Niculescu, I. Mounier, and . Boussaada, A control oriented guided tour in oilwell drilling vibration modeling, Annual reviews in Control, vol.42, pp.100-113, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01425845