Z. Djebbour, Bandgap engineered smart three-terminal solar cell: New perspectives towards very high efficiencies in the silicon world, Prog Photovolt Res Appl, vol.27, pp.4-306, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02072942

,

A. Halm and V. D. Mihailetchi, The Zebra Cell Concept -Large Area n-Type Interdigitated Back Contact Solar Cells and One-Cell Modules Fabricated Using Standard Industrial Processing Equipment, 2012.

R. Shang, Disodium Benzodipyrrole Sulfonate as Neutral Hole-Transporting Materials for Perovskite Solar Cells, J. Am. Chem. Soc, vol.140, pp.5018-5022, 2018.

A. M. Ganose and D. O. Scanlon, Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics, Mater. Chem. C, vol.4, p.1467, 2016.

E. T. Hoke, The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells, Adv. Energy Mater, vol.2, pp.1351-1357, 2012.

, Materials database and references therein

W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, Journal of Applied Physics, vol.32, p.510, 1961.

C. Ramos, L. Bellières, J. P. Connolly, J. Ayucar, and G. Sánchez, Efficiency Enhancement in Plasmonic IBC Solar Cells, p.27, 2012.

J. Kleider, Three-terminal tandem solar cells combining bottom interdigitated back contact and top heterojunction subcells: a new architecture for high power conversion efficiency, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01803057