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ABSTRACT In this paper, we consider a molecular communication system that is made of a 3D unbounded 
diffusion channel model without flow, a point transmitter, and a spherical absorbing receiver. In 
particular, we study the impact of inter-symbol interference, and analyze the performance of different 
threshold-based receiver schemes. The aim of this paper is to analyze and optimize the receivers by using 
the conventional model-based approach, which relies on an accurate model of the system, and the 
emerging data-driven approach, which, on the other hand, does not need any apriori information about 
the system model and exploits deep learning tools. We develop a general analytical framework for 
analyzing the performance of threshold-based receiver schemes, which are suitable to optimize the 
detection threshold. In addition, we show that data-driven receiver designs yield the same performance as 
receivers that have perfect knowledge of the underlaying channel model.

INDEX TERMS Molecular communications, error probability, receiver design, artificial neural networks.

focus our attention on optimizing MC systems in the presence 
of ISI. Developing solutions to reduce the impact of ISI is 
an important research topic in MC systems. For example, 
approaches based on modulation [10], channel coding [11], 
and receiver design [12] are available in the literature. In the 
present paper, we focus our attention on developing robust 
receiver schemes.

In MC systems, a simple approach [9] to demodulate the, 
e.g., binary symbol is to compare the number of received 
particles ri with a fixed threshold τ : i f r i ≤  τ , the symbol 
is detected as 1, otherwise it is detected as 0. The threshold 
of this threshold-based detector is relatively simple to be 
optimized in the absence of ISI or if the ISI is negligible. 
In general, on the other hand, the threshold needs to be 
optimized by taking the ISI into account in order to minimize 
the error probability and obtain good communication perfor-
mance. In [13], the authors have proposed a scheme that uses 
the number of particles received in the previous time-slot, i.e., 
ri−1 , as the detection threshold in a given time-slot. In [12], 
the authors have designed an adaptive receiver that combines 
a channel estimator and a decision-feedback equalizer. The

I. INTRODUCTION

Traditional electromagnetic-based transmission techniques 
may not be appropriate to enable the communication among 
nano-devices [1]. Molecular Communications (MC) are, on 
the other hand, a more suitable and emerging option [2]. In a 
MC system, the information is transmitted via the release of 
information particles [2]. If the information is encoded onto 
the number of particles that are released, the corresponding 
modulation scheme is referred to as Concentration Shift 
Keying (CSK) modulation.

In MC systems, diffusion [3] is the easiest option to enable 
information particles propagate from the transmitter to the 
receiver. Due to the intrinsic characteristics of diffusion, 
the resulting transmission channel is usually affected by 
non-negligible Inter-Symbol Interference (ISI) which, if not 
taken into account for system optimization, may severely 
degrade the system performance [4–8]. The enzyme-based 
MC system [9] is one of the available schemes to mitigate the 
intrinsic ISI in MC systems. If the data rate is high, however, 
the ISI may not be negligible, and the approach in [9] may 
not provide satisfactory performance. For this reason, we
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channel estimator updates the channel parameters and detects 
the symbols constantly. Further results are available in [14]. 
Therein, the authors propose a new decoder that divides each 
slot into sub-slots. According to the number of received par-
ticles in each sub-slots, an associated decision rule is adopted 
and the whole scheme improves the detection performance. 
Similar results are available in [8].

The aforementioned approaches rely on the knowledge of 
the channel and system models. This, however, may not al-
ways be possible either due to the complexity of modeling the 
entire system in an accurate manner or due to the complexity 
of optimizing the resulting system model. These issues can be 
solved by using Machine Learning (ML) methods. With the 
help of ML, several schemes have been proposed [15, 16], 
e.g., for application to Orthogonal Frequency-Division Mul-
tiplexing (OFDM) [17], to circumvent these issues. In MC 
systems, ML-based schemes have been proposed in, e.g.,
[18, 19], to address the issue of accurate system modeling. 
Furthermore, the authors of [20] have recently proposed a se-
quence detection scheme based on sliding bidirectional recur-
rent neural networks that does not need channel information. 
Compared with existing ISI mitigation schemes, with the 
exception of the enzyme-based approach, ML-based schemes 
are less complex and easier to implement. With the aid of 
deep learning methods, the authors of [20] have shown that 
their proposed scheme is capable of automatically learning 
the whole system from empirical data and of performing data 
detection without using complex channel estimation and data 
equalization techniques.

In this paper, motivated by the promising results obtained 
in [20], we study the possibility of optimizing the receiver de-
sign of MC systems in the presence of ISI by using Artificial 
Neural Networks (ANNs). In particular, our implementation 
is based on feed-forward ANNs with fully-connected layers. 
Our study shows that ANNs without prior knowledge of the 
system model are capable of providing the same performance 
as conventional detection methods that rely on the perfect 
knowledge of the underlaying system model. In particular, 
the novelty and contribution of this paper can be summarized 
as follows.
• We compute the Bit Error Rate (BER) of many 

threshold-based detection schemes. Compared with 
other frameworks, the proposed approach takes the 
background noise and the ISI into account in an accu-
rate manner. In particular, we show that the proposed 
ANN-based implementation is capable of estimating the 
optimal threshold that minimizes the BER, as opposed 
to sub-optimal solutions where the dynamic nature of 
the ISI is not taken into account. Our approach is, there-
fore, particularity suitable for optimal threshold-based 
receiver implementations without prior knowledge of 
the system model.

• We develop different receiver schemes, both based on 
conventional detection theory and by applying recent 
results on data-driven optimization based on ANNs. In 
particular, we consider receiver structures that account

for one-bit, two-bit, or all-bit (genie-aided) prior knowl-
edge. We show that both model-based and data-driven
approaches yield similar performance, with the latter
approach having the benefits of not requiring any a
priori information about the system model.

Compared with the companion conference version [21],
this paper is largely expanded, since it encompasses the
modeling, analysis, and optimization of different types of re-
ceivers whose major difference is the number of previously-
detected bits that they use for demodulation. In [21], in fact,
only the zero-bit memory receiver was considered. In [21],
in addition, no general framework to compute the BER was
proposed. The approach proposed in this paper, on the other
hand, can be applied to receivers with an arbitrary number of
past bits used for detection. The corresponding architectures
of the ANNs are proposed as well.

The remainder of this paper is organized as follows. In Sec-
tion II, the system model is introduced. In Section III, model-
based detection schemes are proposed. In Section IV, data-
driven detection schemes are developed and optimized. In
Section V, the proposed schemes are validated via numerical
simulations and illustrations are provided. Finally, Section VI
concludes this paper.

II. SYSTEM MODEL
Figure 1 depicts the main components of a MC system. The 
transmitter generates the information particles, which are 
released into the channel. The transmitter is assumed to be 
small enough to be considered as a point. We assume that 
the information particles diffuse randomly and independently 
of each other through the medium (Brownian motion). Even 
though a large number of information particles are emitted, 
not all of them reach the receiver in the considered time-slot. 
Some information particles remain in the channel and reach 
the receiver in subsequent time-slots: this causes the ISI. If 
not appropriately taken into account, the ISI may severely 
degrade the performance of MC systems. As an example, we 
consider a spherical absorbing-type receiver [22, 23].

We assume that the temperature is constant and the viscos-
ity η remains unchanged during the whole transmission dura-
tion. The diffusion coefficient D [1], thus, remains constant 
as well. In the considered system model, no extra energy is 
needed since particles diffuse freely.

We consider a 3D unbounded diffusion channel model 
without flow, as illustrated in Fig. 2. By assuming the trans-
mitter located at a = (0, 0, 0) and the receiver at b = 
(bx, by, bz), the hitting rate of each information particle can 
be expressed as follows [13, 23]:

f3D
hit (t) =

r(d− r)
d
√

4πDt3
e−

(d−r)2
4Dt (1)

where ‖a−b‖ = d is the distance between the transmitter and 
the center of the receiver, and r is the radius of the receiver 
that is assumed to have a spherical shape.

For ease of illustration, an On-Off Keying (OOK) modu-
lation scheme is considered. At the ith slot, the transmitter

2

qxw
下划线



Propagation channel

Receiver Information Particle
Collector

Proceessing Unit

Transmitter

Information Particle 
Releaser

Information Particle 
Container / Generation

Processing Unit

Environment

Memory Channel

FIGURE 1: Block diagram of a typical MC system.
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FIGURE 2: The 3D unbounded molecular channel model 
without flow including a point transmitter and a spherical 
absorbing receiver.

releases NTX information particles into the environment 
when the symbol is si = 1, otherwise the transmitter does 
not release any particles. We assume that the transmitter can 
release the NTX information particles in a very short time so 
that the release time effect of the transmitter on the received 
signal is negligible.

The hitting probability of an absorbing receiver, i.e., the 
probability to absorb one particle after t seconds that the 
information particle is released, can be expressed as follows:∫ t

0

fhit(t)dt (2)

From (1) and (2), we have:

Phit(t) =

∫ t

0

fhit(t)dt =
r

d
erfc(

d− r√
4Dt

) (3)

where: erf(y) =
∫ y

0
2√
π
e−x

2

dx and erfc(y) = 1− erf(y).

Therefore, during the (i− 1)th time slot after releasing the
particle, the probability that one particle hits the receiver is:

Pi−1 =

∫ iT

(i−1)T

fhit(t)dt (4)

TABLE 1: Simulation parameters

Parameter Value
λ0 100s−1

Receiver radius r 45 nm
Distance d 500 nm
Diffusion coefficient D 4.265 ∗ 10−10m2/s
Discrete time length ∆T 9 us
Slot length T 30∆T
Channel length L 5

Then, we obtain:

Pi−1 =
r

d
{erfc( d− r√

4DiT
)− erfc( d− r√

4D(i− 1)T
)} (5)

Let Cj = NTXPj denote the average received particles
at the jth time-slot if NTX particles are released. Then, the
number of received particles [14] at the ith time-slot follows
the Poisson distribution as follows:

ri ∼ Poisson(Ii + siC0) (6)

where Ii = λ0T +
∞∑
j=1

si−jCj is the sum of ISI and

background noise, and λ0 is the background noise power per
unit time.

More precisely, the probability of receiving ri information
particles is:

P (ri|Ii + siC0) =
e−(Ii+siC0)(Ii + siC0)ri

ri!
(7)

For ease of tractability, we assume that Ci for i > L is
small enough to be integrated into the background noise, and
we denote by L the length of the Poisson channel. Therefore,
Ci for 1 ≤ i ≤ L contributes, in practice, to the ISI. The
signal-to-noise ratio (SNR) can be defined as follows:

SNR = 10log10
C0

2λ0T
(8)

where the information bits are assumed to be equiprobable.
Accordingly, given a certain SNR value, the number of

released particles, NTX , is:

NTX = 2λ0T10
SNR
10 /P0 (9)

For future reference, the system parameters of a typical
MC system are listed in Table 1.

III. MODEL-BASED RECEIVERS DESIGN IN
MOLECULAR COMMUNICATIONS
In this section, we study some receivers in the presence
of ISI with the objective of computing their bit error rate
(BER) performance and optimizing their parameters in order
to minimize the BER. For all cases, the system model is
the same as in the previous section. We consider different
types of threshold-based detectors, whose main difference
consists of the amount of prior information, i.e., the number
of previous bits that they use for demodulation.
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A. OPTIMAL ZERO-BIT MEMORY RECEIVER

We study a threshold-based zero-bit memory receiver. The
demodulation threshold is denoted by τ . Let s̄i be the esti-
mate of symbol si at time-slot i. The demodulation rule can
be formulated as follows:

s̄i =

{
0, ri ≤ τ
1, ri > τ

(10)

The traditional approach to determine the threshold τ is
obtained by imposing P (ri = τ |si = 0) = P (ri = τ |si =
1). The rationale behind this approach is that the values of
Ci for 1 ≤ i ≤ L are unknown, but the averaged ISI,
equal to

∑L
i=1 Ci/2, is known. Under these assumptions, the

probability of receiving ri particles conditioned upon si can
be written as follows:

Papp(ri|si) =
e−λ|si (λ|si)ri

ri!
(11)

where λ|si = C0si +
∑L
j=1 Cj

2 + λ0T .

By imposing the equality Papp(ri|si = 0) = Papp(ri|si =
1), we obtain:

τ =
C0

ln(1 + C0∑L
i=1 Ci/2+λ0T

)
(12)

This approach is, however, sub-optimal. If, in fact, the slot
length is long enough, then the term

∑L
i=1 Ci/2 is a good

approximation for the ISI. If the slot length is short, on the
other hand, the ISI changes according to the previously trans-
mitted symbols and

∑L
i=1 Ci/2 is not a good approximation

anymore. Thus, the obtained demodulation threshold is not
the optimal choice anymore.

In the following proposition, we develop the optimal
demodulation threshold that minimizes the BER. To this
end, we propose also a new accurate analytical formulation
of the BER. For ease of notation, we denote by si−1 =
{si−1, si−2, ...si−L} the vector of bits that are transmitted
in the L time-slots preceding the ith time-slot of interest.

Proposition 1. The optimal threshold that minimizes the
BER of the zero-bit memory receiver is as follows:

(τ∗, P ∗e ) = arg min
τ

Pe(τ) (13)

where Pe(τ) is the BER as a function of τ :

Pe(τ) =
1

2L

∑
si−1

Pe(si−1, τ) (14)

and:

Pe(si−1, τ) =
1

2
[Q(λ0T +

L∑
j=1

si−jCj , dτe)

+ 1−Q(λ0T +
L∑
j=1

si−jCj + C0, dτe)]

(15)

20 40 60 80 100 120
Threshold value

10-3

10-2

10-1

B
E

R

Slot length 50 T
Slot length 30 T

FIGURE 3: BER in (14) as a function of τ (the SNR is 30 dB).

Proof. The BER is defined as follows:

Pe(si−1, τ) =
1

2
[P (ri ≥ τ |si = 0, si−1)

+P (ri < τ |si = 1, si−1)] (16)

where:

P (ri ≥ τ |si = 0, si−1) = P (ri ≥ τ |λ0T +

L∑
j=1

si−jCj)

=

∞∑
k=dτe

e
−(λ0T+

L∑
j=1

si−jCj)

(λ0T +
∑L
j=1 si−jCj)

k

k!

= Q(λ0T +
∑L

j=1
si−jCj , dτe)

(17)

where Q(λ, n) =
∞∑
k=n

e−λλk

k! is the incomplete Gamma

function and Q(λ, 0) = 1. Similarly, we have:

P (ri < τ |si = 1, si−1) = P (ri < τ |λ0T +
L∑
j=0

si−jCj)

=
dτe−1∑
k=0

e
−(λ0T+

L∑
j=1

si−jCj+C0)

(λ0T+
L∑
j=1

si−jCj+C0)k

k!

= 1−
∞∑

k=dτe

e
−(λ0T+

L∑
j=1

si−jCj+C0)

(λ0T+
L∑
j=1

si−jCj+C0)k

k!

= 1−Q(λ0T +
∑L
j=1 si−jCj + C0, dτe) (18)

From (17) and (18), we obtain (15). Finally, the BER is
obtained by averaging (14) with respect to the vector si−1.

The optimal detection threshold, τ , is obtained by mini-
mizing the BER (see (13)). In Fig. 3, we depict (14) as a
function of τ . We observe that an optimal value of τ exists
that minimizes the BER and that it depends on the time slot
duration T , i.e., the amount of ISI.
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B. OPTIMAL ONE-BIT MEMORY RECEIVER
In this section, we study and optimize the performance of a
one-bit memory receiver, which has more prior information
than the zero-bit memory receiver. The receiver can be for-
mulated as follows:

s̄i =

{
0, ri ≤ τ |si−1

1, ri > τ |si−1

(19)

where τ |si−1
denotes the threshold for the ith symbol when

the previously transmitted symbol is si−1. Since the exact
value of si−1 is unknown, the estimate s̄i−1 is employed
instead, i.e., τ |s̄i−1 is used.

In simple terms, in contrast to the zero-bit memory receiver
that accounts only for the number of received particles in
the time-slot of interest, the one-bit memory detector adapts
the detection threshold as a function of the previously trans-
mitted bit (that is, in practice, replaced by its estimate).
Therefore, the detection threshold changes from time-slot to
time-slot, but a better approximation of the ISI is obtained.

The following proposition yields the optimal value of the
detection threshold, by using the same line of thought as for
the zero-bit memory detector.

Proposition 2. The optimal detection threshold of the one-bit
memory receiver can be formulated as follows:

τ∗|si−1
= arg min

τ
Pe(τ, si−1) (20)

where the BER is as follows:

Pe(τ, si−1) =
1

2L−1

∑
si−2,··· ,si−L

Pe(si−1, τ) (21)

In order to compute the optimal threshold for the ith time-
slot, the previously transmitted symbol si−1 is assumed to
be known. In practice, this is not possible, since only its
estimates is available, as discussed already. Therefore, the
BER needs to take this into account. The BER of the one-
bit memory receiver is given in the following theorem.

Theorem 1. The BER of the one-bit memory detector can be
formulated as follows:

Pe =
m+ n

2
(22)

where m and n are the solutions of the following equations:

m =
1

2L

∑
si−1

∑
s̄i−1

Q(λ|si−1,si=0, dτ |s̄ie)

Ψ(si−1, s̄i−1,m, n) (23)

n =
1

2L

∑
si−1

∑
s̄i−1

(1−Q(λ|si−1,si=1, dτ |s̄ie))

Ψ(si−1, s̄i−1,m, n) (24)

λ|si−1,si=0 =
∑L
j=1 Cjsi−j +λ0T . Similarly, λ|si−1,si=1 =∑L

j=1 Cjsi−j +λ0T +C0. The function Ψ(si−1, s̄i−1,m, n)
is defined as follows:

Ψ(si−1, s̄i−1,m, n) =


m, (si−1 = 0, s̄i−1 = 1)

1−m, (si−1 = 0, s̄i−1 = 0)
n, (si−1 = 1, s̄i−1 = 0)

1− n, (si−1 = 1, s̄i−1 = 1)

(25)

Proof. See Appendix VII-A.

C. OPTIMAL K-BIT MEMORY RECEIVER

Inspired by the one-bit memory detector in Section III-B, we
generalize this receiver design by considering a generic K-
bit memory receiver. It is worth nothing that K may be set
equal to L, which is the actual length of the ISI channel. This
setup yields the optimal performance but needs more a priori
information on the previously detected bits, which increases
the complexity of the receiver.

The optimal detection threshold and BER are given in the
following proposition and theorem, respectively.

Proposition 3. The optimal detection threshold of the K-bit
memory receiver can be formulated as follows:

τ∗|si−1,...,si−K = arg min
τ

Pe(τ, si−1, ..., si−K) (26)

where the BER is as follows:

Pe(τ, si−1, ..., si−K) =
1

2L−K

∑
si−K+1,··· ,si−L

Pe(si−1, τ) (27)

Since the exact symbols si−j , for1 ≤ j are unknown, the
estimates s̄i−1, ..., s̄i−K are used to perform the detection:

s̄i =

{
0, ri ≤ τ |s̄i−1,...,s̄i−K

1, ri > τ |s̄i−1,...,s̄i−K
(28)

Theorem 2. The BER of the K-bit memory receiver can be
approximated by using (22), where m and n are the solution
of the equations:

m =
1

2L

∑
si−1

∑
s̄i−1,...,s̄i−K

Q(λ|si−1,si=0, dτ |s̄i−1,...,s̄i−K e)

K∏
j=1

Ψ(si−j , s̄i−j ,m, n)

n =
1

2L

∑
si−1

∑
s̄i−1,...,s̄i−K

(1−Q(λ|si−1,si=1, dτ |s̄i−1,...,s̄i−K e))

K∏
j=1

Ψ(si−j , s̄i−j ,m, n)

Proof. See Appendix VII-B. It is worth mentioning that the
obtained expression of the BER is an approximation for
general values of K. The details of the approximation are
available in the appendix.

where τ |s̄i−1 is the optimal threshold that corresponds to 
the previously detected bit s̄i−1, λ|si−1,si=0 is the average 
number of received particles by conditioning on the current 
symbol being 0 and the previous L symbols being si−1, i.e.,
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Input layer

Hidden layer

Output layer

FIGURE 4: Typical structure of a feed-forward ANN with fully-
connected layers.

IV. DATA-DRIVEN RECEIVER DESIGN IN MOLECULAR 
COMMUNICATIONS
In the previous section, we have optimized the operation 
of receivers by assuming that the underlying system model 
is perfectly known. In this section, we do not rely on this 
assumption anymore, and take advantage of feed-forward 
ANNs with fully-connected layers and deep learning [24] to 
optimize the design of molecular receivers. The architecture 
of a typical feed-forward ANN with fully-connected layers 
is depicted in Fig 4, and it consists of an input layer, several 
hidden layers, and an output layer. The nodes of the hidden 
layers are referred to as neurons.

The objective of this section is to describe how to design 
and optimize receivers by using ANNs and by training an 
ANN by using only empirical data, i.e., the number of 
received particles in the presence of ISI. We describe each 
receiver studied in the previous section in the following sub-
sections.

A. DATA-DRIVEN DESIGN OF ZERO-BIT MEMORY 
RECEIVER
The objective of an ANN-based design is to identify an ANN 
structure that demodulates the transmitted data by minimiz-
ing the BER. An ANN-based zero-bit memory demodulator 
is a system whose input consists of the received information 
particles ri at the ith time-slot, and the outputs are the proba-
bilities that the transmitted bit is 0 or 1, i.e., Pi(si = 0|ri) and 
Pi(si = 1|ri), respectively. Since, Pi(si = 1|ri) + Pi(si = 
0|ri) = 1, only one of the two probabilities is needed. In the 
sequel, we use the notation Pi = Pi(si = 1|ri). Based on the 
inputs, the ANN demodulate the received data as follows:

s̄i =

{
0, Pi ≤ 0.5
1, Pi > 0.5

(29)

where the threshold 0.5 accounts for the fact that the bits are
equiprobable.

In order to train the ANN, we consider a supervised
learning approach, i.e., we compute the parameters (e.g.,

FIGURE 5: Data-driven one-bit memory receiver.

the bias factors and the weights) of the ANN by using a 
known sequence of transmitted bits. In particular, we use the 
Bayesian regularization back propagation technique, which 
updates the weights and biases by using the Levenberg-
Marquardt optimization algorithm. A hyperbolic tangent sig-
moid activation function is employed in all neurons. The set 
of parameters that are used to train and operate the ANN 
are the following: The number of hidden layers is 10, the 
number of neurons per layer is 5, the learning rate is 0.01, 
the training epoch is 200, the total number of training bits is 
50000, and the number of test bits is 100000. In particular, 
the training is performed in a batch mode, and the number 
of bits in each batch is 1000. This setup is used to obtain the 
numerical results in the next section.

B. DATA-DRIVEN DESIGN OF ONE-BIT MEMORY 
RECEIVER
If the one-bit memory receiver is considered, the input of the 
ANN is not just the number of received particles at the ith 
time-slot, ri, but also the estimated symbol at the (i − 1)th 
time-slot, s̄i−1. In mathematical terms, the output estimate of 
the ANN can be formulated as follows:

s̄i =

{
0, P (si = 1|ri, s̄i−1) ≤ 0.5
1, P (si = 1|ri, s̄i−1) > 0.5

A block diagram representation of the ANN-based archi-
tecture is depicted in Fig. 5.

As far as the ANN architecture is concerned, the same sys-
tem setup as for the zero-bit memory receiver is considered
with the only exception that the number of hidden layers is
equal to 5 and the number of neurons per layer is 4.

C. DATA-DRIVEN DESIGN OF K-BIT MEMORY
RECEIVER
By using the same line of thought as for the one-bit memory
receiver, the decision rule of the K-bit memory receiver can
be formulated as follows:

s̄i =

{
0, P (si = 1|ri, s̄i−1, ..., s̄i−K) ≤ 0.5
1, P (si = 1|ri, s̄i−1, ..., s̄i−K) > 0.5

The corresponding block diagram is illustrated in Fig. 6.
In this case, in particular, the training data-unit is consti-

tuted by the vector {ri, si−1, ...si−K ; si}. The same system
setup as for the one-bit memory receiver is considered to
obtain the numerical results illustrated in the next section.
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FIGURE 6: Data-driven K-bit memory receiver.
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FIGURE 7: BER of optimal vs. conventional zero-bit memory
receiver - T = 30∆T .

V. NUMERICAL RESULTS
In this section, we report and describe some simulation 
results in order to validate the analysis, design, and optimiza-
tion of the proposed receivers for application to molecular 
communications. In addition, we compare both model-based 
and data-driven designs.

As far as Monte Carlo simulations are concerned, the MC 
system is assumed to be perfectly synchronized. 
Accordingly, the hitting rate at each ∆T can be obtained 
directly from (1), and the number of received particles can 
be, thus, com-puted from (6) without the need of 
implementing particle-based Monte Carlo simulations. This 
approach reduces the simulation time without compromising, 
under the considered system model, the accuracy of the 
results.
A. ZERO-BIT MEMORY RECEIVERS
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FIGURE 8: Approximated distributions of the received bits
from (11) (the SNR is 25 dB).
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FIGURE 9: Empirical distributions of the received bits (the
SNR is 25 dB).

other in a different point. This justifies the reason why our
approach yields the optimum and a better BER.

The results shown in Fig. 8 and Fig. 9 are, therefore,
very important in order to highlight the sub-optimality of the
demodulation thresholds that have been used in the literature
to date. The results in Fig. 7, in addition, highlight the
advantages of the proposed optimal thresholds in the context
of MC systems design and optimization.

In Fig. 10, we compare the BER of the ANN-based demod-
ulator against the model-based receiver design. We observe a
good accuracy, which confirms the correct optimization of
the ANN, and, at the same time, the correct calculation of
the analytical framework. In Fig. 11, we compare the optimal
threshold computed numerically from (13) as a function of
the SNR, and the demodulation threshold that is learned by

In Fig. 7, we observe that the proposed design based on 
optimizing the detection threshold that minimizes the BER 
provides us with better performance than the sub-optimal 
design. We note, in particular, that for each SNR the opti-
mal detection threshold is used. We observe, in addition, a 
very good accuracy of the proposed analytical framework. 
Notably, Fig. 8 and Fig. 9 provide us with a simple repre-
sentation of the receiver sub-optimality discussed in Sec. III-
A. First of all, we observe that the theoretical and empirical 
distributions of the received number of particles are different. 
More importantly, we observe that the empirical distributions 
cross each other in correspondence of the estimated optimal 
detection threshold, while the approximated ones cross each

7
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FIGURE 10: The ANN-based receiver achieves the same 
BER performance as the optimal zero-bit receiver - T = 30∆T .

15 20 25 30 35 40

SNR (dB)

100

101

102

103

T
hr

es
ho

ld
 v

al
ue

ANN-based scheme equivalent threshold (slot length is 30 T)
Optimal theoretical threshold (slot length is 30 T)

FIGURE 11: Optimal detection thresholds of model-based and 
data-driven schemes. The ANN-based receiver auto-matically 
emulates the optimal zero-bit memory receiver. -T = 30∆T .

the ANN-based demodulator. In the latter case, the threshold 
is obtained, after completing the training of the ANN, and 
identifying the input, i.e., the number of information parti-
cles, for which the output probability is equal to 0.5. We 
observe that the ANN-based implementation is capable of 
learning the demodulation threshold in a very accurate man-
ner. This result is very interesting, as it allows us to unveil 
the hidden behavior of the optimized ANN. It highlights, in 
particular, that the optimized ANN is, indeed, a threshold-
based demodulator.

In order to further test the robustness of our ANN-based 
design, we consider another case study where the distance 
between the transmitter and receiver is short [25]. In this case, 
the hitting rate can be formulated as follows:

fshort(t) =
1

2
[erf(τ1) + erf(τ2)]−

√
Dt

d
√
π

[e−τ
2
1 − e−τ

2
2 ]
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FIGURE 12: System model assuming a short distance be-
tween transmitter and receiver. BER of the optimal vs. sub-
optimal (i.e., based on the sub-optimal threshold) zero-bit 
memory receiver - T = 30∆T .

26 28 30 32 34 36 38 40 42

SNR(dB)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

B
E

R

Optimal zero-bit memory detector simulation BER
ANN-based zero-bit memory simulation BER

4Dt 1 4Dt

FIGURE 13: System model assuming a short distance be-
tween transmitter and receiver. The data-driven receiver 
achieves the same BER performance as the optimal (i.e., 
based on the optimal threshold) zero-bit receiver - T = 30∆T .

where τ1 = √r+d and τ = √r−d .
The rest of the equations can be obtained from this new ex-

pression of the hitting rate. As for the simulation parameters, 
they are the same as those in Table 1, with the exception of 
the distance d = 100nm and the channel length L = 2.

The corresponding results are illustrated in Fig. 12 and 
Fig. 13. We observe that similar performance trends as for 
the first case study are obtained. There exists a gap between 
the BER of optimal and sub-optimal zero-bit receivers. In 
the following sections, therefore, we will consider only the 
channel where the distance between the transmitter and the 
receiver is large.

B. ONE-BIT MEMORY RECEIVERS
In Fig. 14, we compare the BER of the optimal and sub-
optimal one-bit threshold receivers. Also in this case, we
observe that better performance is obtained by using the pro-
posed optimal design. In addition, the numerical results con-
firm the correctness of our analytical framework. In Fig.15,
we observe that the proposed ANN-based design yields the
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FIGURE 14: BER of optimal vs. sub-optimal one-bit memory 
receiver. The performance gap between optimal and sub-
optimal receiver gets smaller since the ISI is modeled more 
accurately - T = 30∆T .
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FIGURE 16: Two-bit memory detector: Comparison between 
the optimal and sub-optimal setups of the demodulation 
thresholds. The more the number of memory bits, the better 
the ISI is modeled. As the memory length approaches the 
channel length, thus, the optimal threshold converges towards 
the conventional threshold - T = 30∆T .
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FIGURE 17: The ANN-based two-bit memory receiver 
achieves the same BER performance as the optimal two-bit 
receiver - T = 30∆T .
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FIGURE 18: The BER performance of ANN-based and model-
based L-bit memory detectors overlap with each other - T = 
30∆T .

VI. CONCLUSION
In this paper, we have introduced a new analytical framework 
to compute the BER of a MC system that uses threshold-
based demodulators. By modeling the receiver as an ANN, 
in addition, we have proved that data-driven receivers provide 
similar performance as those that are optimized based on the 
exact knowledge of the channel model. From the considered

FIGURE 15: The ANN-based receiver achieves the same 
BER performance as the optimal one-bit receiver - T = 30∆T .

same results as the model-based approach, which, however, 
assumes perfect knowledge of the system model.

C. K-BIT MEMORY RECEIVERS
In this section, finally, we consider the design of receivers 
that exploit more than one bit for improving the performance.

In Fig. 16, we compare the BER of the optimal and sub-
optimal receivers by assuming K = 2. We observe that, in 
this case, the sub-optimal receiver is closer to the optimal 
one, if compared to the case studies with K = 0 and K = 1. 
We have observed, in general, that the larger the number of 
bits of memory is, the closer the BER of optimal and sub-
optimal receivers are.

In Fig. 17 and Fig. 18, we compare model-based and ANN-
based receiver designs, and we observe a good agreement. 
In particular, Fig. 18 highlights the improved performance 
that is obtained by increasing the number of bits of memory, 
which, for the considered setup, is K = L, i.e., the actual 
length of the ISI.
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ANN-based receiver design, in addition, we have shown that 
the resulting ANN architecture results in a threshold-based 
receiver whose threshold coincides with that predicted the-
oretically. This is an interesting result for better optimizing 
and further understanding MC systems.

VII. APPENDIX

A. PROOF OF THE BER OF THE ONE-BIT MEMORY 
RECEIVER

The BER is defined as follows:

Pe =
1

2
[P (s̄i = 1|si = 0) + P (s̄i = 0|si = 1)](30)

where P (s̄i = 1|si = 0) is the probability of detecting si
equal to 1 when the transmitted symbol is 0. We have the
following:

P (s̄i = 1|si = 0)

=
∑

si−1,s̄i−1

P (s̄i = 1|si = 0, si−1, s̄i−1)

P (s̄i−1, si−1, ..., si−L)

=
∑

si−1,s̄i−1

P (ri ≥ τ |s̄i−1 |si = 0, si−1, s̄i−1)

P (s̄i−1|si−1)P (si−1)P (si−2, ..., si−L)

=
1

2L

∑
si−1,s̄i−1

P (s̄i−1|si−1)Q(λ|si−1,si=0, dτ |s̄i−1
e)

(31)

where λ|si−1,si=0 = λ0T +
∑L
j=1 si−jCj . By using similar

steps, we obtain:

P (s̄i = 0|si = 1)

=
∑

si−1,s̄i−1

P (s̄i = 0|si = 1, si−1, s̄i−1)

P (s̄i−1, si−1, ..., si−L)

=
∑

si−1,s̄i−1

P (ri < τ |s̄i−1
|si = 1, si−1, s̄i−1)

P (s̄i−1|si−1)P (si−1)P (si−2, ..., si−L)

=
1

2L

∑
si−1,s̄i−1

P (s̄i−1|si−1)(1−Q(λ|si−1,si=1, dτ |s̄i−1e))

(32)

The proof follows.

B. PROOF OF THE BER OF THE MULTI-BIT MEMORY
RECEIVER

From (30), we have the following:

P (s̄i = 1|si = 0)

=
∑

si−1,s̄i−1,...,s̄i−K

P (s̄i = 1|si = 0, si−1, s̄i−1, ...s̄i−K)

P (si−1, s̄i−1, ..., s̄i−K)

=
∑

si−1,s̄i−1,...,s̄i−K

P (s̄i = 1|si = 0, si−1, s̄i−1, ...s̄i−K)

P (s̄i−1|si−1, ..., si−L, s̄i−2, ..., s̄i−K)P (si−1)

P (si−2..., si−L, s̄i−2, ..., s̄i−K)

=
∑

si−1,s̄i−1,...,s̄i−K

P (s̄i = 1|si = 0, si−1, s̄i−1, ...s̄i−K)

P (s̄i−1|si−1, ..., si−L, s̄i−2, ..., s̄i−K)P (si−1)

P (s̄i−2|si−2..., si−L, s̄i−3, ..., s̄i−K)P (si−2) · · ·
P (s̄i−K |si−K , ..., si−L)P (si−K)P (si−K+1, ..., si−L)

(33)

The term P (s̄i−1|si−1..., si−L, s̄i−L) can be calculated as
follows:

P (s̄i−1|si−1, ..., si−L, s̄i−2, ..., s̄i−K)

=
∑

si−L−1,s̄i−K−1

P (s̄i−K−1|si−K−1)P (si−L−1)

P (s̄i−1|si−1, ..., si−L−1, s̄i−2, ..., s̄i−K−1)

Also, P (s̄i−2|si−2..., si−L, s̄i−3, ..., s̄i−K) can be ob-
tained as follows:

P (s̄i−2|si−2, ..., si−L, s̄i−3, ..., s̄i−K)

=
∑

si−L−1,si−L−2,s̄i−K−1,s̄i−K−2

P (s̄i−K−2|si−K−2)

P (s̄i−K−1|si−K−1, si−K−2, s̄i−K−2)P (si−L−1)P (si−L−2)

P (s̄i−2|si−2, ..., si−L−2, s̄i−3, ..., s̄i−K−2)

(34)

To obtain a tractable closed-form expression, we use the
following approximation to compute, recursively, P (s̄i =
1|si = 0):

P (s̄i = 1|si = 0)

=
1

2

∑
si−1,s̄i−1

P (s̄i−1|si−1)P (s̄i = 1|si = 0, si−1, s̄i−1)

≈ 1

22

∑
si−1,s̄i−1

P (s̄i−1|si−1)
∑

si−2,s̄i−2

P (s̄i−2|si−2)

P (s̄i = 1|si = 0, si−1, s̄i−1, si−2, s̄i−2)

≈ 1

2L

∑
si−1,s̄i−1

P (s̄i−1|si−1)...
∑

si−K ,s̄i−K

P (s̄i−K |si−K)

P (s̄i = 1|si = 0, si−1, s̄i−1, ..., s̄i−K) (35)

The calculation of P (s̄i = 1|si = 0, si, s̄i−1, ..., s̄i−K)
can be done for any threshold, τ |s̄i−1,...,s̄i−K , and from the
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average number of received particles as follows:

λsi−1,si=0 = λ0T +
L∑
j=1

si−jCj .

From (7), we obtain:

P (s̄i = 1|si = 0)

=
1

2L

∑
si−1

∑
s̄i−1,...,s̄i−K

P (s̄i−1|si−1)...P (s̄i−K |si−K)

Q(λsi−1,si=0, dτ |s̄i−1,...,s̄i−K e)

(36)

P (s̄i = 0|si = 1) can be computed by using similar steps
and assumptions:

P (s̄i = 0|si = 1)

≈ 1

2L

∑
si−1

∑
s̄i−1,...,s̄i−K

P (s̄i−1|si−1)...P (s̄i−K |si−K)

P (s̄i = 0|si = 1, si−1, s̄i−1, ..., s̄i−K) (37)

where:

λsi,si=1 = C0 + λ0T +
L∑
j=1

si−jCj

Finally, we obtain the following:

P (s̄i = 0|si = 1)

=
1

2L

∑
si−1

∑
s̄i−1,...,s̄i−K

P (s̄i−1|si−1)...P (s̄i−K |si−K)

(1−Q(λsi−1,si=1, dτ |s̄i−1,...,s̄i−K e))

(38)

This concludes the proof.
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