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Parameters Estimation via Dynamic Regressor Extension and Mixing*

Stanislav Aranovskiy!, Alexey Bobtsov2, Romeo Ortega®, Anton Pyrkin?

Abstract— A new way to design parameter estimators with
enhanced performance is proposed in the paper. The procedure
consists of two stages, first, the generation of new regression
forms via the application of a dynamic operator to the original
regression. Second, a suitable mix of these new regressors to
obtain the final desired regression form. For classical linear re-
gression forms the procedure yields a new parameter estimator
whose convergence is established without the usual requirement
of regressor persistency of excitation. The technique is also
applied to nonlinear regressions with ‘“partially” monotonic
parameter dependence—giving rise again to estimators with
enhanced performance. Simulation results illustrate the advan-
tages of the proposed procedure in both scenarios.

I. INTRODUCTION

A new procedure to design parameter identification
schemes is proposed in this article. The procedure, called
Dynamic Regressor Extension and Mixing (DREM), consists
of two stages, first, the generation of new regression forms
via the application of a dynamic operator to the data of the
original regression. Second, a suitable mix of these new data
to obtain the final desired regression form to which standard
parameter estimation techniques are applied.

The DREM procedure is applied in two different scenarios.
First, for linear regression systems, it is used to generate
a new parameter estimator whose convergence is ensured
without a persistency of excitation (PE) condition on the
regressor. It is well known that standard parameter estimation
algorithms applied to linear regressions give rise to a linear
time—varying system, which is exponentially stable if and
only if a certain PE condition is imposed—this fundamental
result constitutes one of the main building blocks of identifi-
cation and adaptive control theories [2], [3]. Relaxation of the
PE condition is a challenging theoretical problem and many

*Due to a lack of space the proofs were not included. The interested
reader is referred to [1] to examine them.
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research works have been devoted to it in various scenarios,
see e.g., [4]-[11] and references therein. Due to its practical
importance research on this topic is of great current interest.

The second parameter estimation problem studied in this
article is when the parameters enter nonlinearly in the regres-
sion form. It is well known that nonlinear parameterizations
are inevitable in any realistic practical problem. On the
other hand, designing parameter identification algorithms for
nonlinearly parameterized regressions is a difficult poorly
understood problem. An interesting case that has recently
been explored in the literature is when nonlinearities can be
factorisable and the dependence with respect to the param-
eters exhibit some monotonicity properties; see [12]-[14].
Unfortunately, it is often the case that this property holds
true only for some of the functions entering in the regression
stymying the application of the proposed techniques. Our
second contribution is the use of the DREM technique to
“isolate” the good nonlinearities and be able to exploit
the monotonicity to achieve consistent parameter estimation
for nonlinearly parameterised regressions with factorisable
nonlinearities—not imposing PE conditions.

The remaining of the paper is organized as follows. The
DREM technique is first explained with its application to
linear regressions in Section II. In Section III DREM is
used for nonlinear factorisable regressions with “partially”
monotonic parameter dependence. In both sections represen-
tative simulation examples are presented. Some concluding
remarks and future research are given in Section IV.
Notation. For = € R", |z| is the Euclidean norm. All
functions and mappings in the paper are assumed sufficiently
smooth. For a function of scalar argument g : R — R?, ¢’
denotes its first order derivative. For functions V' : R™ — R
we define the operator VV := (%—‘;)T. Also, for mappings
® : R" x RY — R" we define its (transposed) Jacobian
matrix V,®(x,0) := [V®(x,0),...,VP,(x,0)]. For the
distinguished element z, € R™ and any mapping F': R" —
R® we denote F, := F(x,).

II. CONSISTENT ESTIMATION FOR LINEAR REGRESSIONS
WITHOUT PE

In this section the DREM technique is applied to classical
linear regressions. The main contribution is the removal of



the—often overly restrictive—assumption of regressor PE to
ensure parameter convergence.

A. Standard procedure and the PE condition

Consider the basic problem of on-line estimation of the
constant parameters of the g—dimensional linear regression

y(t) =m" (1), (1)

where! 5 : R, — R and m : R, — RY are known, bounded
functions of time and # € RY is the vector of unknown
parameters. The standard gradient estimator

6 =Tm(y—m'0), 2)
with a positive definite adaptation gain I' € R7*? yields the
error equation .

6 = —Tm(t)m" (t)0, 3)
where 6 := 6 — 6 are the parameter estimation errors. It is
well-known [2], [3] that the zero equilibrium of the linear
time—varying system (3) is (uniformly) exponentially stable
if and only if the regressor vector m is PE, that is, if

t+T
/ m(s)ym' (s)ds > 1, 4)
¢

for some T',§ > 0 and for all ¢ > 0, which will be denoted as
m(t) € PE. If m(¢) ¢ PE, which happens in many practical
circumstances, very little can be said about the asymptotic
stability of (3), hence about the convergence of the parameter
errors to zero.

Remark 1: 1t is well known that the PE conditions for
the gradient estimator presented above and more general
estimators—Ilike (weighted) least squares—exactly coincide
[15]. Since the interest in the paper is to relax the PE condi-
tion, attention is restricted to the simple gradient estimator.

Remark 2: To simplify the notation it has been assumed
above that the measurement signal y is one—dimensional. As
will become clear below DREM is applicable also for the
vector case.

B. Proposed dynamic regressor extension and mixing proce-
dure

To overcome the limitation imposed by the PE condition
the DREM procedure generates g new, one—dimensional,
regression models to independently estimate each of the
parameters under conditions on the regressor m that differ
from the PE condition (4).

The first step in DREM is to introduce ¢ — 1 linear, Lo~
stable operators H; : Loo — Lo, © € {1,2,...,q — 1},

'When clear from the context, in the sequel the arguments of the functions
are omitted.

whose output, for any bounded input, may be decomposed
as

(g (1) = [Hi()](t) + €t (5)

with €, is a (generic) exponentially decaying term. For
instance, the operators H; may be simple, exponentially

stable LTI filters of the form H;(p) = %45, with p := &

and «; # 0, 8; > 0; in this case €; accounts for the effect of

the initial conditions of the filters. Another option of interest
are delay operators, that is [H;(-)](t) := (-)(t — d;), where
d; € R+.

Now, we apply these operators to the regressor equation
(1) to get the filtered regression?

-
ys, = my,0.

Piling up the original regressor equation (1) with the g—1
filtered regressors we can construct the extended regressor

system
Ye(t) = M(1)0, (6)
where we defined Y, : R, — R? and M, : Ry — R7%7 ag
y m'
T
Y m
Vom | 0| M= |0 ™
Yfa1 m}rcrl

Note that, because of the L.,—stability assumption of H;,
Y. and M, are bounded. Premultiplying (6) by the adjugate
matrix of M, we get g scalar regressors of the form

Yi(t) = ¢(t)0; (8)

with ¢ € ¢ := {1,2,...,q}, where Y; is the i-th component
of the vector Y : Ry — R?

Y(t) = adi{ M. (£)}Y. (8), ©)
and we defined the determinant of M, as
o(t) := det{M,(t)}.

The estimation of the parameters 6; from the scalar

(10)

regression form (8) can be easily carried out via
0i = 7io(Yi — ¢6:), i € 4, (1)

with adaptation gains 7; > 0. From (8) it is clear that the
latter equations are equivalent to

0; = —v:4%0;, i € q. (12)

Solving this simple scalar differential equation we conclude
that
o) ¢ L = lim 0;(t) = 0. (13)
— 00

2To simplify the presentation in the sequel we will neglect the e; terms,
which will be incorporated in the analysis later.



The derivations above establish the following proposition.
Proposition 1: Consider the q—dimensional linear regres-
Ry = Rand m : Ry — R? are
known, bounded functions of time and 6 € R? is the vector

sion (1) where y :

of unknown parameters. Introduce q — 1 linear, L ,—stable
operators H; : Loo — Loo, © € {1,2,...,q — 1} verifying
(5). Define the vector Y, and the matrix M. as given in (7).
Consider the estimator (11) with ¢ and Y; defined in (10)
and (9), respectively. The implication (13) holds.

oOg

Remark 3: It is important to underscore that for any
matrix A € R9*9 holds adj{A}A = det{A}I,, even if A is
not full rank, [16].

Remark 4: 1f we take into account the presence of the
exponentially decaying terms ¢; in the filtering operations
the error equation (12) becomes 91 = —%-(;5292- + €, 1 € q.
The analysis of this equation, which establishes (13), may
be found in Lemma 1 of [4].

C. Discussion

Two natural questions arise at this point.

Q1. Is the condition ¢(t) ¢ Lo weaker than m(t) € PE?
Q2. Given a regressor m(t) ¢ PE how to select the operators
H; to enforce the condition ¢(t) ¢ L2?

Regarding the question QI, the following remarks are in
order.

Remark 5: In Remark 7 the example of m(t) ¢ PE is
given, such that ¢(t) ¢ Lo. Next we present an example,
such that m(t) € PE, but ¢(t) € L,.

Consider the regressor m(t) := [sin(t) cos(t)]" and the
operator H(p) = pé(_’;ig, where ¢ > 0. Note that for
unit frequency the operator H provides zero phase shift and

the magnitude gain c. Thus mq¢(t) = csin(t), moy(t) =
ccos(t) and

sin(t)
csin(t)

M.(t) = [ cos(t) ] .

ccos(t)

Obviously, m(t) € PE, but det{M.(t)} = 0 and ¢(t) € Lo.

Remark 6: From definition (4) it is clear that the PE
condition is a requirement imposed on the minimal eigen-
value of the matrix as illustrated by the equivalence
Amin { :+T m(s)m'(s)dsy > 6 > 0 <= mf(t) € PE,
where Apin{-} denotes the minimal eigenvalue. On the other
hand, the condition ¢(t) ¢ L, is a restriction on all eigenval-
ues of the matrix M,. Indeed, this is clear recalling that the
determinant of a matrix is the product of all its eigenvalues
and that for any two bounded signals a,b : R, — R we have
a(t)b(t) ¢ L2 = a(t) ¢ Lo and b(t) ¢ Lo. Consequently,
a necessary condition for parameter convergence of the

estimators (11) is that all eigenvalues of the matrix M, are
not square integrable.
To provide a (partial) answer to the question Q2 above

let us consider the simplest case of ¢ = 2 with m =
col(mq,m2). In this case
¢ =mimaf —mifms. (14)

The proposition below identifies a class of regressors
m(t) ¢ PE but ¢(t) ¢ Lo for the case of H a simple LTI
filter.

Proposition 2: Define the set of differentiable functions

Jim g(t) = lim (1) = 0}

For all g € G the regressor m(t) = [1, g+ g]" ¢ PE. Let
the operator H be defined as

HOIO = | 0] 0

The function ¢ defined in (14) verifies (t) ¢ Lo.
Remark 7: An example of a function g € G is g(t) =
sin(t)(1 +t)~2. The corresponding regressor is

15)

1
m(t) = l sint4cost _ _ sint_ ] .
(102 2(141)3
Remarks 5, 6, and 7 illustrate the fact that the new
convergence condition ¢(t) ¢ Lo proposed in the paper

radically differ from the standard PE requirement m(t) € PE.

D. Simulation results

We first evaluate the performance of the classical parame-
ters estimator (2) with m(t) given by (15). From the analysis
of Subsection II-A we know that the LTV system (3) is
stable, but it is not exponentially stable since m(t) ¢ PE,
and PE is a necessary condition for exponential stability.

The transient behavior of the parameter errors é(t) with
I' = ~4I; and § = col(—3,3) is shown in Fig. 1 for
0(0) = col(3,-3), v = 3 and v = 10. It is worth noting
that it is not possible to conclude from the simulations
whether é(t) converges to zero asymptotically or not. The
plots show that convergence has not been achieved even
after a reasonably long period of 500. The graphs also show
that increasing -~y that, in principle, should speed—up the
convergence, makes the situation even worse, cf. Fig. 1 (a)
and (b). If the adaptation gain is taken as " = diag{~1, 72}
it is possible to improve the transient performance, but this
requires a time—consuming, trial-and—error tuning stage that
is always undesirable.

Next we study performance of the DREM estimator (11)
with the same m(t), H defined in Proposition 2 and 6§ =
col(—3,3). The transient behavior of A(t) is given in Fig.
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Fig. 1: Transient performance of the parameter errors 9 (t) for
the gradient estimator (2) with m(t) given by (15), 6(0) =
col(3,-3) and T = v15, v = 3, 10.
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Fig. 2: Transient performance of the parameter errors é(t)
for the DREM estimator (11) with m(t) given by (15), H
defined in Proposition 2, §(0) = col(3, —3) and v, » = 3, 10.

2 for 6(0) = col(3,-3), 712 = 3 and 7,2 = 10. The
simulations illustrate significant performance improvement
both in oscillatory behavior and in convergence speed—
notice the difference in time scales. Moreover, tuning of the
gains ~y; in the DREM estimator is straightforward, cf. Fig.
2 (a) and (b).

III. PARAMETER ESTIMATION OF “PARTIALLY”
MONOTONIC REGRESSIONS

In this section we propose to use the DREM technique for
nonlinearly parameterised regressions with factorisable non-
linearities. In contrast with [13], we consider the case where
some—>but not all—of the functions verify a monotonicity
condition. The main objective is to generate a new regressor
that contains only these “good’ nonlinearities.

We consider factorisable regressions of the form

y(t) = m(t)(0),

: Ry — R” and m : Ry — R™ P contain
measurable functions, the mapping 1 : R? — RP is known

(16)

where y

and 0 € R? is the unknown parameter vector. It is clear
that the nonlinear regression (16) can be “transformed” into
a linear one defining the vector n := v(0) to which the
standard gradient estimator

7 =Tm' (y — m7) (17)

can be applied. However, overparametrization suffers from
well-known shortcomings, c¢f. [2], [3], [13].

A. Main result

To state the main result of this section we make the
following assumption.
Assumption 1: Consider the regression form (16), where

n < p. (18)

There are q functions ; that, reordering the outputs y;, we
arrange in a vector g : R9 — RY,

q <p, (19)

verifying

Py (0) + [V ()] P > pol, >0, (20)

for some positive definite matrix P € R1*4. In this case, the
Sfunction 1 verifies [17]

(a—b)" Plihg(a) — 1y(b)] > prla—b[?, Va,b € RY, (21)

for some p; > 0.
Consistent with Assumption 1 we rewrite (16) as

1y(6)
Un(6)
where yn : Ry — R"™ is the reordered output vector, m, :
Ry — R™4, my : Ry — R™(P=9) 4 : RY — R? and
Py : R? — RPY,

As will become clear below DREM must accomplish two

ya(t) = [my () my(t) [ @

tasks, on one hand, generate a regression without m;. On
the other hand, to be able to relax the PE condition, the new
regressor matrix should be square (or tall). If (19) does not
hold, all functions ¥;, 1 = 1,...
condition and there is no need to eliminate any one of them.

, D, satisfy the monotonicity

On the other hand, if (18) is not satisfied a square regressor
without the “bad” part of the regressor 1, can be created
without the introduction of the operators H;. Indeed, if n = p
the matrix my is tall and it admits a full-rank left annihilator
mbl : Ry — R?*™ Moreover, the new regressor matrix
m; m, is square. A similar situation arises if n > p.
Following DREM we introduce n; operators, apply them
to some rows of (22) and pile all the regression forms to get

yn ] _ |:Mg Mb] lwg(e)] _ (23)

YN Py(6)

where we defined the matrices My : Ry — Rntns)xq
M, : Ry — R(vnp)x(p—a)

M, = My , My = o .
myf my

(24)



To select the number ny of operators we notice that the
matrix to be eliminated, that is My, is of dimension (n +
ny) x (p—q). Therefore, to have a left annihilator for it with
q rows, which is needed to make the new regressor square,

we must fix ny = p — n. Define
® := My M,. (25)

Multiplying on the left by adj{®}M;- the equation (23)
yields the desired regressor form

Y = det{®},(6), (26)
where
Y = adi{®}M [ YN ] . 27)
YNf
We propose the estimator
6 = det{®}TP[Y — det{®}4,(d)), (28)

with I' € R?*9, T' > 0, and we are in position to present the
main result of this section

Proposition 3: Consider the nonlinearly parameterised
factorisable regression (22) satisfying Assumption 1. Intro-
duce p—n linear, L,—stable operators H; : Lo — Lo, T €
{1,2,...,p—n} verifying (5). Define the matrices My, M,
as given in (24). Consider the estimator (28) with ® and Y
defined in (25), (27) and Mg- : Ry — RY*P g full-rank left
annihilator of My. The following implication holds

det{®(t)} ¢ Lo — tli>r£10|§(t)\ =0.

Moreover, if det{®(t)} > K > 0, then |0(t)| tends to 0
exponentially fast.

Remark 8: In [13] it is shown that the local verification
of the monotonicity condition (20) reduces to a linear matrix
inequality (LMI) test provided some prior knowledge on the
parameters is available. More precisely, assume 6 € © C RY,
with

0:={0cR?|6; [0, 0M] C R}

1 7

The quadratic approximation of the mapping v4(6) verifies
(20) if and only if the LMI

PV, (vi) + [V (v)] P >0, i=1,...,(29)1

is feasible, where the vectors v; € © are computable from
the vertices of ©.

B. An example

Consider the simplest scalar case of n = 1, p = 2 and
q = 1. The regression (16) becomes

(29)

y() = [my() ma(0)] [;ﬁgg;] ,

0.4 -0.4
—in(t) — i (t)
o ()| (1)
o 20 40 60 80 100 o 20 40 60 80 100
time [s] time [s]
3 0 50 0
@l = [O 3} (b)l“f[0 5]

Fig. 3: Transient behaviour of the errors 7j(t) for the over—
parameterized parameter estimator (17) for different gains;
7(0) = 0 and 7(0) = —(0) = —(1) ~ [-0.63, —0.54] .

where y : Ry - R, m; : Ry - Rand ¢, : R = R,
for i = 1,2. Assume that () is strongly monotonically
increasing, that is, 1 (6) > po > 0, and that inequality (21)
is satisfied with P =1 and 1), chosen as ;.
Following the DREM procedure we apply an operator H

to (29) and pile—up the two regressions as

v | _ [mi) ma)] [ea0)

() myp () mgs(t)] |1a(6)
Multiplying on the left the equation above by the row vector

[my; —my] we get the desired regression involving only 1,
namely, Y (t) = ®(¢)11(0), where we defined the signals

Y (= myry —mpyys, ®:=morm; —momyy.  (30)
From Proposition 3 we conclude that the estimator
0 = y®[Y — ®¢1(0)], 7 > 0 31)

ensures that 6(t) — 0 as t — oo if ®(t) ¢ Ly.
The proposition below identifies a class of regressors
m(t) ¢ PE but ®(¢) € Lo for a simple delay operator.
Proposition 4: The regressor

m(t) = |

Let the operator H be the delay operator, that is,
()f&)=()t—d) and d € [%, 3F]. The function ®
defined in (30) verifies ®(t) & Lo.

As an example consider the regression

sin(t)

V2w

1}¢PE.

y®) = m(t) (0 —e?) +my(t)cos(d),

which clearly satisfies condition (21) with 4(6) chosen as
¥1(0) := 0 — e~ Simulations of the overparametrized
estimator (17) with § = 1 are given in Fig. 3 while
simulations of the DREM estimator (31) with the delay
operator H defined in Proposition 4 with d = 2 are shown
in Fig. 4.



~10
time [s]
Fig. 4: Transients of the error 6(t) of the DREM parameters
estimator (31) with different gains; 6(0) = —1.

IV. CONCLUDING REMARKS AND FUTURE RESEARCH

A procedure to generate new regression forms for which
we can design parameter estimators with enhanced perfor-
mance has been proposed. The procedure has been applied to
linear regressions yielding new estimators whose parameter
convergence can be established without invoking the usual,
hardly verifiable, PE condition. Instead, it is required that
the new regressor vector is not square integrable, which is
different than PE of the original regressor. For nonlinearly
parameterised regressions with monotonic nonlinearities the
procedure allows to treat cases when only some of the
nonlinearities verify this monotonicity condition. Similarly
to the case of linear regressions, convergence is ensured if
the determinant of the new regressor is not square integrable.

The design procedure includes many degrees of freedom
to verify the aforementioned convergence condition. Current
research is under way to make more systematic the choice of
this degrees of freedom. It seems difficult to achieve this end
at the level of generality presented in the paper. Therefore,
we are currently considering more “structured” situations,
for instance, when the original regression form comes from
classes of physical dynamical systems or for a practical appli-
cation. Preliminary calculations for the problem of current—
voltage characteristic of photovoltaic cells—which depend
nonlinearly on some unknown parameters—are encouraging
and we hope to be able to report the results soon.
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