S. Aranovskiy, R. Ortega, J. G. Romero, and D. Sokolov, A globally exponentially stable speed observer for a class of mechanical systems: experimental and simulation comparison with high-gain and sliding mode designs, International Journal of Control, vol.0, issue.0, pp.1-14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01658753

D. J. Block, K. J. Åström, and M. W. Spong, The reaction wheel pendulum, Synthesis Lectures on Control and mechatronics, vol.1, issue.1, pp.1-105, 2007.

S. Boyd, L. El-ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory, vol.15, 1994.

M. Gajamohan, M. Merz, I. Thommen, and R. Andrea, The cubli: A cube that can jump up and balance, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3722-3727, 2012.

A. Levant, Robust exact differentiation via sliding mode technique, Automatica, vol.34, issue.3, pp.379-384, 1998.

W. Perruquetti and T. Floquet, Homogeneous finite time observer for nonlinear systems with linearizable error dynamics, 46th IEEE Conference on Decision and Control, pp.390-395, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00171342

W. Perruquetti, T. Floquet, and E. Moulay, , 2008.

, Finite-time observers: Application to secure communication, IEEE Transactions on Automatic Control, issue.1, p.53

I. Ryadchikov, S. Sechenev, M. Drobotenko, A. Svidlov, P. Volkodav et al., Stabilization system of a bipedal non-anthropomorphic robot anywalker, Journal of Engineering Science and Technology Review, vol.11, pp.128-133, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01927623

M. W. Spong, P. Corke, and R. Lozano, Nonlinear control of the reaction wheel pendulum, Automatica, vol.37, issue.11, pp.1845-1851, 2001.

L. K. Vasiljevic and H. K. Khalil, Error bounds in differentiation of noisy signals by high-gain observers, Systems & Control Letters, vol.57, issue.10, pp.856-862, 2008.