A. Bellemans, G. Aversano, A. Coussement, and A. Parente, Feature extraction from reduced order models based on principal component analysis, Comput. Chem. Eng, 2018.

B. Beykal, F. Boukouvala, C. A. Floudas, and E. N. Pistikopoulos, Optimal design of energy systems using constrained grey-box multi-objective optimization, Comput. Chem. Eng, vol.0, pp.1-15, 2018.

B. Beykal, F. Boukouvala, C. A. Floudas, N. Sorek, H. Zalavadia et al., Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations, Comput. Chem. Eng, vol.114, pp.99-110, 2018.

C. M. Bishop, Pattern Recognition and Machine Learning, p.53, 2013.

K. Bizon and G. Continillo, Reduced order modelling of chemical reactors with recycle by means of POD-penalty method, Comput. Chem. Eng, vol.39, pp.22-32, 2012.

K. Bizon, G. Continillo, M. Berezowski, and J. Smua-ostaszewska, Optimal model reduction by empirical spectral methods via sampling of chaotic orbits, Physica D, vol.241, issue.17, pp.1441-1449, 2012.

K. Bizon, G. Continillo, E. Mancaruso, S. S. Merola, and B. M. Vaglieco, POD-based analysis of combustion images in optically accessible engines, Combust. Flame, vol.157, issue.4, pp.632-640, 2010.

S. Cao, B. Bennett, B. Ma, and D. Giassi, Effects of fuel dilution and gravity on laminar coflow methane-air diffusion flames: acomputational and experimental investigation, pp.1-9, 2013.

S. Cao, B. Ma, B. A. Bennett, D. Giassi, D. P. Stocker et al., A computational and experimental study of coflow laminar methane/air diffusion flames: effects of fuel dilution, inlet velocity, and gravity, Proc. Combust. Inst, vol.35, issue.1, pp.897-903, 2015.

P. G. Constantine, E. Dow, and Q. Wang, Active subspace methods in theory and practice, SIAM J. Sci. Comput, vol.36, issue.4, pp.1500-1524, 2014.

A. Coussement, B. J. Isaac, O. Gicquel, and A. Parente, Assessment of different chemistry reduction methods based on principal component analysis: comparison of the MG-PCA and score-PCA approaches, Combust. Flame, vol.168, pp.83-97, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02398438

T. Crestaux, O. Le-maître, and J. M. Martinez, Polynomial chaos expansion for sensitivity analysis, Reliab. Eng. Syst. Saf, vol.94, issue.7, pp.1161-1172, 2009.

A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, A computational tool for the detailed kinetic modeling of laminar flames: application to C2H4/CH4 coflow flames, Combust. Flame, vol.160, issue.5, pp.870-886, 2013.

A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method, Energy Fuels, vol.27, issue.12, pp.7730-7753, 2013.

T. Echekki and H. Mirgolbabaei, Principal component transport in turbulent combustion: a posteriori analysis, Combust. Flame, vol.162, issue.5, pp.1919-1933, 2015.

M. Fürst, P. Sabia, M. Lubrano-lavadera, G. Aversano, M. De-joannon et al., Optimization of chemical kinetics for methane and biomass pyrolysis products in moderate or intense low-Oxygen dilution combustion, Energy Fuels, 2018.

M. Guenot, I. Lepot, C. Sainvitu, J. Goblet, and R. F. Coelho, Adaptive sampling strategies for non-intrusive POD-based surrogates, Eng. Comput, vol.30, issue.4, p.401311329352, 2013.

S. Haag and R. Anderl, Digital twin Proof of concept, Manuf. Lett, pp.10-12, 2018.

B. J. Isaac, A. Coussement, O. Gicquel, P. J. Smith, and A. Parente, Reduced-order PCA models for chemical reacting flows, Combust. Flame, vol.161, issue.11, pp.2785-2800, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01115952

B. J. Isaac, J. N. Thornock, J. Sutherland, P. J. Smith, and A. Parente, Advanced regression methods for combustion modelling using principal components, Combust. Flame, vol.162, issue.6, pp.2592-2601, 2015.

I. T. Jolliffe, Principal Component Analysis, 2002.

N. Kambhatla and T. Leen, Dimension reduction by local principal component analysis, Neural Comput, vol.9, issue.7, pp.1493-1516, 1997.

B. A. Khuwaileh and P. J. Turinsky, Surrogate based model calibration for pressurized water reactor physics calculations, Nuclear Eng. Technol, vol.49, issue.6, pp.1219-1225, 2017.

T. Lancien, N. Dumont, K. Prieur, D. Durox, S. Candel et al., Uncertainty quantification of injected droplet size in mono, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01780997

G. Lin, On the Bayesian calibration of expensive computer models with input dependent parameters, Spat. Stat, 2017.

S. N. Lophaven, J. Søndergaard, and H. B. Nielsen, Kriging toolbox, pp.1-28, 2002.

H. Mirgolbabaei, T. Echekki, and N. Smaoui, A nonlinear principal component analysis approach for turbulent combustion composition space, Int. J. Hydrogen Energy, vol.39, issue.9, pp.4622-4633, 2014.

J. Müller, C. A. Shoemaker, and R. Piché, SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems, Comput. Oper. Res, vol.40, issue.5, pp.1383-1400, 2013.

A. Parente and J. C. Sutherland, Principal component analysis of turbulent combustion data: data pre-processing and manifold sensitivity, Combust. Flame, vol.160, issue.2, pp.340-350, 2013.

A. Parente, J. C. Sutherland, B. B. Dally, L. Tognotti, and P. J. Smith, Investigation of the MILD combustion regime via Principal Component Analysis, Proc. Combust. Inst, vol.33, issue.2, pp.3333-3341, 2011.

A. Parente, J. C. Sutherland, L. Tognotti, and P. J. Smith, Identification of lowdimensional manifolds in turbulent flames, Proc. Combust. Inst, vol.32, issue.1, pp.1579-1586, 2009.

R. G. Regis and C. A. Shoemaker, Constrained global optimization of expensive black box functions using radial basis functions, J. Global Optim, vol.31, issue.1, pp.153-171, 2005.

S. Sahyoun and S. Djouadi, Local proper orthogonal decomposition based on space vectors clustering, Systems and Control (ICSC), pp.665-670, 2013.

B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, Shaping the digital twin for design and production engineering, CIRP Ann. Manuf. Technol, vol.66, issue.1, pp.141-144, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01513846

M. Seeger, Gaussian Processes for Machine Learning, 2004.

J. C. Sutherland and A. Parente, Combustion modeling using principal component analysis, Proc. Combust. Inst, vol.32, issue.1, 2009.

T. H. Uhlemann, C. Schock, C. Lehmann, S. Freiberger, and R. Steinhilper, The digital twin: demonstrating the potential of real time data acquisition in production systems, Procedia Manuf, vol.9, pp.113-120, 2017.

L. J. Williams, Principal component analysis, vol.2, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01259094

M. Xiao, P. Breitkopf, R. F. Coelho, P. Villon, and W. Zhang, Proper orthogonal decomposition with high number of linear constraints for aerodynamical shape optimization, Appl. Math. Comput, vol.247, pp.1096-1112, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01993117

M. Xiao, P. Breitkopf, R. Filomeno-coelho, C. Knopf-lenoir, M. Sidorkiewicz et al., Model reduction by CPOD and Kriging, Struct. Multidiscip. Optim, vol.41, issue.4, pp.555-574, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01994243

M. Xiao, P. Breitkopf, R. Filomeno-coelho, C. Knopf-lenoir, and P. Villon, Enhanced POD projection basis with application to shape optimization of car engine intake port, Struct. Multidiscip. Optim, vol.46, issue.1, pp.129-136, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01994238

M. Xiao, P. Breitkopf, R. Filomeno-coelho, C. Knopf-lenoir, P. Villon et al., Constrained proper orthogonal decomposition based on QR-factorization for aerodynamical shape optimization, Appl. Math. Comput, vol.223, pp.254-263, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01993136

J. Yu, Local and global principal component analysis for process monitoring, J. Process Control, vol.22, issue.7, pp.1358-1373, 2012.