Modeling spatial competition for light in plant populations with the porous medium equation - CentraleSupélec Accéder directement au contenu
Article Dans Une Revue Journal of Mathematical Biology Année : 2015

Modeling spatial competition for light in plant populations with the porous medium equation

Résumé

We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.
Fichier non déposé

Dates et versions

hal-02404088 , version 1 (11-12-2019)

Identifiants

Citer

Robert Beyer, Octave Etard, Paul-Henry P.-H. Cournède, Pascal Laurent-Gengoux. Modeling spatial competition for light in plant populations with the porous medium equation. Journal of Mathematical Biology, 2015, 70 (3), pp.533-547. ⟨10.1007/s00285-014-0763-1⟩. ⟨hal-02404088⟩
47 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More