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Abstract

In this paper, we examine the shifted passivity property of port-Hamiltonian systems. Shifted passivity
accounts for the fact that in many applications the desired steady-state values of the input and output
variables are nonzero, and thus one is interested in passivity with respect to the shifted signals. We consider
port-Hamiltonian systems with strictly convex Hamiltonian, and derive conditions under which shifted
passivity is guaranteed. In case the Hamiltonian is quadratic and state dependency appears in an affine
manner in the dissipation and interconnection matrices, our conditions reduce to negative semidefiniteness
of an appropriately constructed constant matrix. Moreover, we elaborate on how these conditions can be
extended to the case when the shifted passivity property can be enforced via output feedback, thus paving
the path for controller design. Stability of forced equilibria of the system is analyzed invoking the proposed
passivity conditions. The utility and relevance of the results are illustrated with their application to a 6th
order synchronous generator model as well as a controlled rigid body system.
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1. Introduction

Passive systems are a class of dynamical systems in which the rate at which the energy flows into the
system is not less than the increase in storage. In other words, starting from any initial condition, only
a finite amount of energy can be extracted from a passive system. This, together with the invariance
under negative feedback interconnection, has promoted passivity as a basic building block for control of
dynamical and interconnected systems. Interested readers are referred to [1, 2, 3] for a tutorial account of
the applications of passivity in control theory.

Passivity of state-space systems is commonly defined as an input-output property for systems whose
desired equilibrium state is the origin and the input and output variables are zero at this equilibrium
[4, 1, 2]. If several such systems are interconnected—for instance, a plant with a controller—the origin
is an equilibrium point of the overall system whose stability may be assessed using the tools of passivity
theory. In many applications, however, the desired equilibrium is not at the origin and the input and output
variables of the system take nonzero values at steady-state. A standard procedure to describe the dynamics
in these cases is to generate a so-called incremental model with inputs and outputs the deviations with
respect to their value at the equilibrium. A natural question that arises is whether passivity of the original
system is inherited by its incremental model, a property that we refer in this paper as shifted passivity.
Following [5], we use a shifted storage function to address this issue, see also the shaped Hamiltonian in
[6]. This shifted function is closely related to the notion of availability function used in thermodynamics
[7, 8]. A byproduct of the construction of shifted storage functions is a passivity property which is uniform
for a range of steady-state solutions. This is particularly advantageous in flow networks, distribution, and
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electrical networks where loads/demands are not precisely known and are treated as constant disturbances,
[9, 10, 11, 12, 13, 14]; see also [15, 16, 17] where the term “equilibrium-independent passivity” has been used
to refer to the aforementioned uniform passivity property.

We study in this paper shifted passivity of port-Hamiltonian (pH) systems that, as is well-known, provide
an attractive energy-based modeling framework for nonlinear physical systems [18, 19, 20]. The Hamiltonian
readily serves as a storage function certifying passivity of a pH system, however, proving its shifted passivity
is in general nontrivial. In [5] it is shown that pH systems with convex Hamiltonian are also shifted
passive provided the input, dissipation and interconnection matrices are all constant. Conditions for shifted
passivity of pH systems with state-dependent matrices have been reported in [6] and [21]. In the former
case, quite conservative, integrability conditions, are imposed while the latter ones are too general and thus
can be difficult to verify. The main contribution of the present paper is to give easily verifiable conditions—
i.e., monotonicity of a suitably defined function—to ensure shifted passivity of pH systems with strictly
convex Hamiltonian and state-dependent dissipation and interconnection matrices. Similarly to [5] our
candidate storage function is the shifted Hamiltonian, which is associated with the Bregman distance of the
Hamiltonian with respect to an equilibrium of the system [22].

Notably, for the case of affine pH systems with quadratic Hamiltonian, our conditions reduce to negative
semidefiniteness of an appropriately constructed constant matrix. The proposed conditions are exploited
to certify local and global stability of forced pH systems, i.e., under constant external inputs, see [6]. An
additional contribution of our work is that the proposed conditions provide an estimate of the excess and
shortage of passivity that serves as a tool for controller design, see e.g. [23].

The structure of the paper is as follows. The problem formulation is provided in Section 2. The main
results are given in Section 3, and are specialized to quadratic affine pH systems in Section 4. The results
are illustrated with a synchronous generator and a rigid body model in Section 5. The paper closes with
conclusions in Section 6.

Notation All functions are assumed to be sufficiently smooth. For mappings H : Rn → R and C : Rn → Rn

we denote the transposed gradient as ∇H :=
(
∂H
∂x

)>
and the transposed Jacobian matrix as ∇C :=

(
∂C
∂x

)>
.

The Jacobian (∇C(·))> is simply denoted by ∇C(·)>. An n ×m matrix of zeros is denoted by 0nm. For a
vector x ∈ Rn, we denote its Euclidean norm by ‖x‖.

2. Problem Formulation

Consider the pH system

ẋ = (J(x)−R(x))∇H(x) +Gu (1a)

y = G>∇H(x), (1b)

with state x ∈ Rn, input u ∈ Rm, and output y ∈ Rm. The constant matrix G ∈ Rn×m has full column rank,
and H : Rn → R is the Hamiltonian of the system. The matrix J is skew-symmetric, i.e., J(x) +J>(x) = 0,
and

R(x) ≥ R∗, ∀x ∈ Rn (2)

for some constant positive semidefinite matrix R∗.
Define the steady-state relation

E := {(x, u) ∈ Rn × Rm | (J(x)−R(x))∇H(x) +Gu = 0}.

Fix (x, u) ∈ E and the corresponding output y := G>∇H(x). We are interested in finding conditions under
which the mapping (u − u) → (y − y) is passive. We refer to this property as shifted passivity, which is
formally defined next:
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Definition 1 Consider the pH system (1). Let (x, u) ∈ E and define y := G>∇H(x). The pH system (1) is
shifted passive if the mapping (u− u)→ (y − y) is passive, i.e., there exists a function H : Rn → R≥0 such
that

Ḣ = (∇H)> ẋ ≤ (u− u)>(y − y) (3)

for all (x, u) ∈ Rn × Rm.

Remark 2 Note that shifted passivity is different from the classical incremental passivity property [24].
In fact, the latter is much more demanding as the word “incremental” refers to two arbitrary input-output
pairs of the system, whereas in the former only one input-output pair is arbitrary and the other one is fixed
to a constant.

3. Main Results

In this section, we provide our main results concerning shifted passivity, stability, and shifted feedback
passivity of the pH system (1).

3.1. Shifted passivity

Here, we provide conditions under which the pH system (1) is shifted passive in the sense of Definition
1. Towards this end, we make two assumptions:

Assumption 1 The Hamiltonian H is strictly convex.

Given the strictly convex function H we define the Legendre transform, sometimes called Legendre-
Fenchel transform, of H as the function

H∗(p) := max
x
{x>p−H(x)},

where the domain of H∗ is the set of all p for which the expression is well-defined (i.e., the maximum is
attained). We list the following properties of the Legendre transform H∗; see e.g. [25], [26].

1. The domain of H∗ is equal to the convex range of ∇H.

2. H∗ is strictly convex.

3. H∗∗ = H.

4. ∇H∗(∇H(x)) = x, for all x.

5. ∇H(∇H∗(p)) = p, for all p in the convex range of ∇H.

Let F (x) := J(x)−R(x). Leveraging the Legendre transform above, the function F (x) can be restated
in terms of co-energy variables s := ∇H(x) as

F (x) = F (∇H∗(s)) =: F(s). (4)

We denote the domain of H∗, which is equal to the range of ∇H, by S. Let s := ∇H(x). We impose the
following assumption on F :

Assumption 2 The mapping F verifies

∇(F(s) s ) +∇(F(s) s )> − 2R∗ ≤ 0, ∀s ∈ S. (5)

Note that the choice of R∗ is important in feasibility of (5), and is best to choose the lower bound in (2)
as tight as possible. Now, we have the following result:
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Proposition 3 Let Assumptions 1 and 2 hold. Then, the pH system (1) is shifted passive, namely

Ḣ ≤ (u− u)>(y − y) (6)

is satisfied with
H(x) := H(x)− (x− x)>∇H(x)−H(x). (7)

Proof. First, note that H is nonnegative as the Hamiltonian H is (strictly) convex [22, 5]. Substituting (4)
into (1) yields

ẋ = F(s)s−F(s) s+G(u− u),

where we have subtracted 0 = F(s) s+Gu. Noting that ∇H(x) = ∇H(x)−∇H(x), the time derivative of
H(x) is computed as

Ḣ = (∇H)>ẋ =
(
s− s

)>(F(s)s−F(s) s
)

+ (y − y)>(u− u)

=
(
s− s

)>(F(s)−F(s)
)
s

+
(
s− s

)>
F (x)

(
s− s

)
+ (y − y)>(u− u)

≤
(
s− s

)>(F(s)−F(s)
)
s

−
(
s− s

)>
R∗
(
s− s

)
+ (y − y)>(u− u), (8)

where we used (1b) in the first identity, added and subtracted the term
(
s − s

)>(F(s)s
)

and used (4) to
write the second equality, while the bound is obtained invoking (2). Now, let

M(s) := F(s)s−R∗s. (9)

Then Ḣ can be written as

Ḣ =
(
s− s

)>(M(s)−M(s)
)

+ (y − y)>(u− u). (10)

By (5), we have that ∇M(s) + (∇M(s))> ≤ 0, for all s ∈ S, which ensures that the mapM(·) is monotone
[27]. The proof is completed noting that by monotonicity(

s− s
)>(M(s)−M(s)

)
≤ 0.

�

Remark 4 By Assumptions 1 and 2, both the strict convexity and the monotonicity property must hold
for the whole sets Rn and S, respectively, which results in “global” shifted passivity of (1). For local shifted
passivity,1 we can restrict to a subset X ⊆ Rn, with Assumptions 1 and 2 modified to

1. The Hamiltonian is strictly convex in X ⊆ Rn.

2. Inequality (5) holds for all s ∈ S := {∇H(x) | x ∈ X},

while R∗ is any matrix satisfying, instead of (2), R(x) ≥ R∗, ∀x ∈ X .

1By “local” we mean that there exist open neighborhoods X ⊆ Rn and U ⊆ Rm of (x, u) ∈ X × U such that (6) holds for
all (x, u) ∈ X × U .
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3.2. Stability of the forced equilibria

Lyapunov stability of the equilibrium of (1) with u = u, immediately follows from Proposition 3, with
the Lyapunov function being the shifted Hamiltonian H. Moreover, asymptotic stability follows by imposing
the condition that Ḣ is negative definite. Below, we provide the results concerning stability of the forced
pH-system (1a) with u = u. Although deducing stability properties from passivity is well-known [1], we
provide the proof for the sake of completeness.

Proposition 5 Consider the pH system (1a) for some constant input u = u, and let (x, u) ∈ E. Then, we
have

1. The equilibrium is asymptotically stable if ∇2H(x) > 0 and there exists ε > 0 such that the inequality

∇(F(s) s ) +∇(F(s) s )> − 2R∗ ≤ −2εIn, (11)

holds at s = s.2

2. The equilibrium is globally asymptotically stable if the Hamiltonian H is strongly convex and (11) holds
for all s ∈ Rn.

Proof. Set u = u and take the shifted Hamiltonian H as the Lyapunov candidate, and suppose that (11)
holds at the point s = s. Then there exists an open neighborhood S of s and some 0 < ε′ ≤ ε such that

∇(F(s)s ) +∇(F(s)s )> − 2R∗ ≤ −2ε′In, (12)

for all s ∈ S. Let X := {x | ∇H(x) ∈ S}. By ∇H∗(s) = x, and continuity of ∇H∗3, the set X ∈ Rn defines
an open neighborhood of the equilibrium x. It is easy to see that (12) implies (local) strong monotonicity
of the map M in (9), see [27], and the dissipation inequality (10) gives

Ḣ = −ε′ ‖s− s‖2 , ∀x ∈ X .

Now, noting that H is locally strictly convex, the function S is locally nonnegative and is equal to zero
whenever x = x [22]. Hence, there exists a compact subset of X which is forward invariant along the
solutions of the system (see also [5, Prop. 2]). By invoking LaSalle’s invariance principle, on the invariant
set we have s = s, which results in x = x by strict convexity of H.

To prove the second statement, it suffices to show that S is radially unbounded. This follows from strong
convexity of H noting that [28, Ch.2]

H(x) = H(x)− (x− x)>∇H(x)−H(x) ≥ µ ‖x− x‖2 ,

for some µ ∈ R+. �

Remark 6 The identity matrix in the right hand side of (11) can be replaced by a positive semidefinite
matrix C>C, with C ∈ Rm×n, if the equilibrium is “observable” from the input-output pair (u,C∇H(x)),
namely if

ẋ = F (x)∇H + gu, C∇H(x) = C∇H(x) =⇒ x = x.

2This means that the Jacobian of F(s) s in (11) has to be evaluated at s = s.
3The map ∇H∗ is still well-defined as H is locally strictly convex, i.e., ∇2H(x) > 0, and S can be chosen as a convex set.
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3.3. Enforcing shifted passivity via output feedback

We complete this section by considering the case where the condition (5) does not hold, which means
that the system (1) may not be shifted passive, but it can be rendered shifted passive via output feedback.

Proposition 7 Consider the pH system (1) verifying Assumption 1 and such that

∇(F(s) s ) +∇(F(s) s )> − 2R∗ ≤ 2γ GG>,

for some γ ∈ R. Then, the shifted Hamiltonian (7) satisfies the following dissipation inequality

Ḣ ≤ (u− u)>(y − y) + γ ‖y − y‖2 .

Proof. The proof is analogous to that of Proposition 3, by adding and subtracting the term γGG>(s− s)
in (8), and modifying the map M as

M̃(s) :=M(s)− γGG>s.

�

Remark 8 Note that a negative γ proves that the pH system is (output-strictly) shifted passive. On the
other hand, a positive γ indicates the shortage of shifted passivity. Notice that the simple proportional
controller

u = u−KP (y − y) + v,

with KP ≥ γI, ensures that the interconnected system is passive from the external input v to output y− y.
Analogously, Proposition 7 can be used to design dynamic passive controllers to stabilize the closed-loop
system, see [23] for an application to control of permanent magnet synchronous motors.

4. Application to Quadratic Affine Systems

In this section we specialize our results to the case where

F (x) = F0 +

n∑
i=1

Fixi, (13)

with Fj ∈ Rn×n, j = 0, . . . , n, constant and

H(x) =
1

2
x>Qx, (14)

with Q ∈ Rn×n being positive definite. We call these systems quadratic affine pH systems.
In order to satisfy (2) and state the global version of our results, we need to assume that R(x) = R0

for some constant matrix R0. This is due to the fact that in the affine case the inequality R(x) ≥ R∗, for
all x ∈ Rn, implies that the matrix R is constant. In Remark 12, we elaborate on how this assumption is
relaxed to obtain local results. Note that, in this case, F0 + F>0 = −2R0 ≤ 0 and Fj + F>j = 0 for each
j ≥ 1.

Proposition 9 Consider the quadratic affine pH system (1) with (13) and (14). Fix (x, u) ∈ E and define
the n× n constant matrix

B :=

n∑
i=1

FiQxe
>
i Q
−1, (15)
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with ei ∈ R the i-th element of the orthogonal basis. If

B +B> − 2R0 ≤ 0, (16)

then (1) is shifted passive, namely
Ḣ ≤ (y − y)>(u− u),

where H is the quadratic shifted Hamiltonian function

H(x) :=
1

2
(x− x)>Q(x− x).

Proof. The proof follows by verifying the conditions of Proposition 3. In this case, H∗(p) = 1
2p
>Q−1p,

∇H∗(s) = Q−1s, s = Qx,

and

F(s) = F0 +

n∑
i=1

Fi(e
>
i Q
−1s). (17)

Hence,

F(s)s = (F0 +

n∑
i=1

Fi(e
>
i Q
−1s))Qx.

Now, by rewriting the last expression in the equivalent form

F(s)s = F0Qx+

n∑
i=1

FiQxe
>
i Q
−1s,

we obtain that

∇(F(s)s) =

n∑
i=1

FiQxe
>
i Q
−1.

Finally, using (15), condition (5) takes the form

∇(F(s)s) +∇(F(s)s)> − 2R0 = B +B> − 2R0 ≤ 0.

�

Remark 10 The stability condition in Proposition 9 can equivalently be stated in terms of the co-energy
variables s = ∇H(x), which in certain cases decreases the computational effort. To this end, note that by
(17), the function F(s) can be written in the affine form:

F(s) = F0 +

n∑
i=1

Fisi,

where Fi :=
∑n

j=1 FjQ
−1
ij . Hence, the matrix B in (15) can be equivalently written as

B :=

n∑
i=1

FiQxe
>
i .

Noting that H is strongly convex and the condition (16) is state independent, Proposition 5 yields the
following result:

Corollary 11 Consider the quadratic affine pH system (1a) with (13) and (14) under some constant input
u = u, and let (x, u) ∈ E. The equilibrium x̄ is globally asymptotically stable if (16) holds with strict
inequality.

Remark 12 Analogous to the previous section, local variations of Proposition 9 and Corollary 11 can be
obtained by restricting x in a domain X ∈ Rn with x ∈ X . In that case, the matrix R0 in (16) is replaced
by R∗, where R(x) ≥ R∗ ≥ 0 for all x ∈ X .
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5. Case Studies

In this section, we apply the proposed method to two physical systems. Both systems are affine and have
quadratic Hamiltonian.

5.1. Synchronous generator (6th-order model) connected to a resistor

The state variables of the six-dimensional model of the synchronous generator comprise of the stator
fluxes on the dq axes ψd ∈ R, ψq ∈ R, rotor fluxes ψr ∈ R3 (the first component of ψr corresponds to the
field winding and the remaining two to the damper windings), and the angular momentum of the rotor p.
The Hamiltonian H (total stored energy of the synchronous generator) is the sum of the magnetic energy of
the generator and the kinetic energy of the rotating rotor. More precisely, the Hamiltonian takes the form

H(x) = 1
2x
>Qx with x =

[
ψd ψq ψr p

]>
and

Q =

[
L−1 051
015 m−1

]
> 0 , L =


Ld 0 kLafd kLakd 0
0 Lq 0 0 −kLakq

kLafd 0 Lffd Lakd 0
kLakd 0 Lakd Lkkd 0

0 −kLakq 0 0 Lkkq

 ,

where m ∈ R is the total moment of inertia of the turbine and the rotor. Note that the elements of the
inductance matrix L are all constant parameters, see [29] for more details. The system dynamics is then
given by the pH system [29]

ẋ = (J(x)−R)∇H(x) +G

[
Vf
τ

]
,

with

J(x) =


022 023

[
−ψq

ψd

]
032 033 031[

ψq −ψd

]
013 0

 , R =



[
r 0
0 r

]
023 021

032

Rf 0 0
0 Rkd 0
0 0 Rkq

 031

012 013 d


> 0 , G =


021 0211
0
0

 031

0 1

 ,

where Vf represents the rotor field winding voltage, τ is the mechanical torque, r is the summation of the
load and stator resistances, Rf , Rkd, Rkq denote the rotor resistances, and d corresponds to the mechanical
friction. We can rewrite the system as

Q−1ṡ = (J (s)−R)s+G

[
Vf
τ

]
, (18)

where s = Qx = [Id Iq Ir ω]>. Here Id ∈ R, Iq ∈ R are the components of the stator current on the dq
axes, and Ir ∈ R3 and ω ∈ R are the currents and angular velocity of the rotor, respectively. Note that

J (s) =


022 023 vJ(s)

032 033 031

v>J (s) 013 0

 , vJ(s) :=

[
−LqIq + LakqIkq

LdId + LafdIf + LakdIkd

]
.
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z

Figure 1: A rigid body with three axes of rotation

Let Vf = V f and τ = τ , for some constant vectors V f and τ . Through straightforward calculations, and
using Remark 10, the condition (16) reads as

−2r ω(Ld − Lq) 0 0 kωLakq −ĪqLd

ω(Ld − Lq) −2r kωLafd kωLakd 0 ĪdLd

0 kωLafd −2Rf 0 0 −ĪqLafd

0 kωLakd 0 −2Rkd 0 −ĪqLakd

kωLakq 0 0 0 −2Rkq −ĪdLakq

−ĪqLd ĪdLd −ĪqLafd −ĪqLakd −ĪdLakq −2d

 ≤ 0 , (19)

where Īd, Īq, Īr, ω are the associated values of s at the equilibrium of (18), i.e.

(J (s)−R)s+G

[
V f

τ

]
= 0 ,

with s = [Īd Īq Īr ω]>. Hence, by Proposition 9, (18) is shifted passive if (19) holds. Moreover, by
Corollary 11, if (19) holds with strict inequality, then the equilibrium x = Q−1s is globally asymptotically
stable. The stability result is consistent with those of [30, 31]4. Note that Corollary 11 is valid for a general
quadratic affine pH-system, and the condition (19) is obtained in a systematic manner here, namely by
verifying the negative definiteness test in (16). Moreover, if (19) does not hold, then in view of Proposition
7, one can investigate the possibility of designing suitable proportional, PI, or more generally dynamic
(input-strictly) passive controllers rendering the equilibrium globally asymptotically stable.

5.2. Controlled rigid body under constant disturbances

The equations for the angular momentum of a rigid body (see Figure 1) with external torque u ∈ R3

and disturbance d ∈ R3 reads as [19]

ṗ = J(p)∇H(p) + u+ d (20)

y = ∇H(p) , (21)

where p =
[
px py pz

]>
,

J(p) =

 0 −pz py
pz 0 −px
−py px 0

 ,

and the Hamiltonian is given by H(p) = 1
2p
>Mp, with

M =

mx 0 0
0 my 0
0 0 mz

 > 0 .

4Notice that there is a typo in [31] as the term ω(Ld − Lq) is missing.
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Here, mx ∈ R, my ∈ R, and mz ∈ R are the principal moments of inertia. Consider a constant disturbance

d =
[
dx dy dz

]>
and a proportional controller u = −Ry with R = diag (rx, ry, rz) > 0. We can rewrite

the system as

Mω̇ = J (ω)−Rω +

dxdy
dz

 . (22)

where

J (ω) =

 0 −ωzmz ωymy

ωzmz 0 −ωxmx

−ωymy ωxmx 0

 ,

and ω = M−1p =
[
ωx ωy ωz

]>
is the vector of angular velocities around the axes x, y, and z. The point

(ωx, ωy, ωz) is an equilibrium of the system (22) satisfying

J (ω)−Rω +

dxdy
dz

 = 0 ,

with ω =
[
ωx ωy wz

]>
. Through straightforward calculations, the condition (16) (with strict inequality)

reads as  −2rx ωz(my −mx) ωy(mx −mz)
ωz(my −mx) −2ry ωx(mz −my)
ωy(mx −mz) ωx(mz −my) −2rz

 < 0 . (23)

Hence, by Corollary 11, if (23) holds for the equilibrium point (ωx, ωy, ωz), then global asymptotic stability
is guaranteed. In the case that there is disturbance actuating only on one axis, e.g. dy = dz = 0 (without
loss of generality), the equilibrium (ωx, ωy, ωz) = (dx

rx
, 0, 0) is globally asymptotically stable if

r2xryrz >
(dx(mz −my)

2

)2
.

6. Conclusion

We have examined the shifted passivity property of pH systems with convex Hamiltonian by proposing
conditions in terms of the monotonicity of suitably constructed functions. We have leveraged these condi-
tions to study (global) asymptotic stability of forced equilibria of the system. As we observed, for quadratic
affine pH system, shifted passivity and (global) asymptotic stability are guaranteed if an appropriately
constructed constant matrix is negative semidefinite. We demonstrated the applicability and usefulness of
the results on a 6th order synchronous generator model and a controlled rigid body system. Future works
include attempting to reduce possible conservatism in the stability conditions as well as investigating the
connections of the proposed results to contraction and differential passivity [32, 33].
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