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ABSTRACT

This paper addresses the problem of regulating the output voltage of a DC-DC
buck-boost converter feeding a constant power load, which is a problem of current
practical interest. Designing a stabilising controller is theoretically challenging be-
cause its average model is a bilinear second order system that, due to the presence
of the constant power load, is non-minimum phase with respect to both states.
Moreover, to design a high-performance controller, the knowledge of the extracted
load power, which is difficult to measure in industrial applications, is required. In
this paper, an adaptive interconnection and damping assignment passivity-based
control—that incorporates the immersion and invariance parameter estimator for
the load power—is proposed to solve the problem. Some detailed simulations are
provided to validate the transient behaviour of the proposed controller and compare
it with the performance of a classical PD scheme.

KEYWORDS

Buck-boost converter; constant power load; interconnection and damping
assignment passivity based control; immersion and invariance

1. Introduction

The DC-DC buck-boost power converter is increasingly utilized in power distri-
bution systems since it can step up or down the voltage between the source
and load, providing flexibility in choosing the voltage rating of the DC source.
Although the control of these converters in the face of classical loads is well-
understood, in some modern applications the loads do not behave like standard passive
impedances, instead they are more accurately represented as constant power loads
(CPLs), which correspond to first-third quadrant hyperbolas in the loads voltage-
current plane. This scenario significantly differs from the classical one and poses a
new challenge to control theorist, see (Barabanov, Ortega, Griño, & Polyak, 2016;
Emadi, Khaligh, Rivetta, & Williamson, 2006; Khaligh, Rahimi, & Emadi, 2008;
Marx, Magne, Nahid-Mobarakeh, Pierfederici, & Davat, 2012) for further discussion
on the topic and (Singh, Gautam, & Fulwani, 2017) for a recent review of the litera-
ture. It should be underscored that the typical application of this device requires large
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variations of the operating point—therefore, the dynamic description of its behavior
cannot be captured by a linearized model, requiring instead a nonlinear one.

To the best of the authors’ knowledge no controller, with guaranteed stability prop-
erties for the nonlinear model, has been proposed for the voltage regulation of the
buck-boost converter with a CPL—hence, its solution remains an open problem. Sev-
eral techniques to address this problem, but without a nonlinear stability analysis,
have been reported in the power electronics literature. In (Rahimi & Emadi, 2009),
the active-damping approach is utilized to address the negative impedance instability
problem raised by the CPL. The main idea of this method is that a virtual resistance is
considered in the original circuit to increase the system damping. However, the stability
result is obtained by applying small-signal analysis, which is valid only in a small neigh-
bourhood of the operating point. A new nonlinear feedback controller, which is called
“Loop Cancellation”, has been proposed to stabilize the buck-boost converter by “can-
celling the destabilizing behaviour caused by CPL” (Rahimi, Williamson, & Emadi,
2010). The control problem turns into the design of a controller for the linear system
by using loop cancellation method. However, the construction is based on feedback lin-
earization (Isidori, 1995) that, as is well-known, is highly non-robust. A sliding mode
controller is designed in (Singh, Rathore, & Fulwani, 2016) for this problem. However,
for the considered nonlinear system, the stability result is obtained by adopting the
linear system theory. In addition, as it is widely acknowledged, the drawbacks of this
method are that the proposed control law suffers from chattering and its relay action
injects a high switching gain. The deleterious effect of these factors is clearly illustrated
in experiments shown in (Singh et al., 2016), which exhibit a very poor performance.

Aware of the need to deal with the intrinsic nonlinearities of power converters
some authors of this community have applied passivity-based controllers (PBCs),
which is a natural candidate in these applications. Unfortunately, in many of these
reports the theoretical requirements of the PBC methodology are not rigorously re-
spected. In (He, Ortega, Cisneros, Mancilla, & Li, 2017) a review of some of the—
alas, incorrect or incomplete—results on application of PBC for power converters
is given. For instance, in (Kwasinski & Krein, 2007), the well-known standard PBC
(Ortega, Loria, Nicklasson, & Sira-Ramirez, 1998) is used for the buck-boost with a
CPL. Unfortunately, the given result is theoretically incorrect due to the fact that the
authors fail to validate the stability of the zero dynamics of the system with respect
to the controlled output that, as explained in (Ortega et al., 1998), is an essential step
for the stability analysis and, as shown in this paper, it turns out to be violated.

An additional drawback of the existing results is that all of them require the knowl-
edge of the power extracted by the CPL, which is difficult to measure in industrial
applications. Designing an estimator for the power is a hard task because the original
system is nonlinear and the only available measurements are inductor current and
output voltage.

In this paper, we apply the well-known interconnection and damping assignment
(IDA) PBC, first reported in (Ortega, Van der Schaft, Maschke, & Escobar, 2002) and
reviewed in (Ortega & Garcia-Canseco, 2004), to stabilize the buck-boost converter
with a CPL. The main contributions of this note are:

1) Derivation of an IDA-PBC that ensures the desired operating point is a (locally)
asymptotically stable equilibrium with a guaranteed domain of attraction.

2) Design of an estimator of load power, which is based on the immersion and invari-
ance (I&I) technique (Astolfi, Karagiannis, & Ortega, 2008) and has guaranteed
stability properties, to make the IDA-PBC adaptive.
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3) Proof that the zero dynamics of the system, with respect to both states, is
unstable—limiting the achievable performance of classical PD controllers to
“low-gain tunings”.

The remaining of the paper is organized as follows. Section 2 contains the model of
the system and the analysis of its zero dynamics with respect to the two states. More-
over, a remark on the result reported in (Kwasinski & Krein, 2007) is given. Section
3 proposes the IDA-PBC assuming the power is known. To make the latter scheme
adaptive in Section 4 we design a on-line power estimator, while some simulations
carried out by MATLAB are provided in Section 5. This paper is wrapped-up with
some concluding remarks in Section 6. To enhance readability, the derivation of the
IDA-PBC that is conceptually simple but computationally involved, is given in an
appendix at the end of the paper.

2. System Model, Problem Formation and Zero Dynamics Analysis

In this section, the average model of buck-boost converter feeding a CPL, its zero
dynamics analysis and a remark on the existing result on (Kwasinski & Krein, 2007)
are given.

2.1. Model of buck-boost converter with CPL

The topology of buck-boost converter feeding a CPL, is shown in Fig. 1. Under the
standard assumption that it operates in continuous conduction mode, the average
model is given by

L
di

dt
= −(1− u)v + uE,

C
dv

dt
= (1− u)i− P

v
, (1)

where i ∈ R>0 is the inductor current, v ∈ R>0 the output voltage, P ∈ R>0 the power
extracted by the CPL, E ∈ R>0 is the input voltage and u ∈ [0, 1] is the duty ratio,
which is the control signal.

Figure 1. Circuit representation of the DC-DC buck-boost converter with a CPL

Some simple calculations show that the assignable equilibrium set is given by

E :=

{

(i, v) ∈ R
2
>0 | i− P

(

1

v
+

1

E

)

= 0

}

. (2)
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2.2. Control problem formulation

Consider the system (1) verifying the following conditions.

Assumption 1. The power load P is unknown but the parameters L,C and E are
known.

Assumption 2. The state (i, v) is measurable.

Fix a desired output voltage v⋆ ∈ R>0 and compute the associated assignable equi-
librium point (i⋆, v⋆) ∈ E . Design a static state-feedback control law with the following
features.

(F1) (i⋆, v⋆) is an asymptotically stable equilibrium of the closed-loop with a well-
defined domain of attraction.

(F2) It is possible to define a set Ω ⊂ R
2
>0 which is invariant and inside the domain of

attraction of the equilibrium. That is, a set inside the positive orthant verifying

[(i(0), v(0)) ∈ Ω ⇒ (i(t), v(t)) ∈ Ω,∀t ≥ 0]

lim
t→∞

(i(t), v(t)) = (i⋆, v⋆).

To simplify the notation, and without loss of generality, in the sequel we consider
the normalized model of the system, which is obtained using the change of coordinates

x1 :=
1

E

√

L

C
i

x2 :=
1

E
v, (3)

and doing the time scale change τ = t√
LC

that yields the model

ẋ1 = −(1− u)x2 + u

ẋ2 = (1− u)x1 −
D

x2
(4)

where

D :=
P

E2

√

L

C
,

˙(·) denotes d
dτ
(·) and all signals are expressed in the new time scale τ . The assignable

equilibrium set E in the coordinates x is given by

Ex :=

{

x ∈ R
2
>0 | x1 −

D

x2
−D = 0

}

(5)

Notice that, under Assumptions 1 and 2, the control problem is translated into the
design of a state feedback for the system (4), with unknown D, such that a given
x⋆ ∈ Ex is asymptotically stable.

It is important to recall that the signal of interest is the output voltage v, therefore,
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for the fixed x2⋆ ∈ R>0, the x1⋆ ∈ R>0 is defined via

x1⋆ =
D

x2⋆
+D. (6)

2.3. Stability analysis of the systems zero dynamics

The design of a stabilising controller for (4) is complicated by the fact that, as shown
in the proposition below, its zero dynamics with respect to both states is unstable. This
means that, if the controller injects high gain, the closed-loop system will be unstable—
as it stems from the fact that the poles will move towards the unstable zeros. This
situation hampers the design of high performance PD controllers, which require high
proportional gains to speed up the transients. See Section 5 for an illustration of this
fact.

Proposition 2.1. Consider the system (4) and an assignable equilibrium x⋆ ∈ Ex.
The zero dynamics with respect to the outputs x1 − x1⋆ or x2 − x2⋆ are unstable.

Proof. Fixing x1 = x1⋆ and using the first equation in (4) we get

u =
x2

x2 + 1
,

which substituted in the second equation of (4) yields the zero dynamics

ẋ2 =
D

x2⋆x2(x2 + 1)
(x2 − x2⋆) =: s(x2). (7)

The slope of s(x2) evaluated at x2 = x2⋆ gives

s′(x2)|x2=x2⋆
=

D

x22⋆(1 + x2⋆)
.

Since x2⋆ > 0, this is a positive number proving that the equilibrium x2⋆ of the
dynamics (7) is unstable—as claimed by the proposition.

Now, fixing x2 = x2⋆ and using the second equation of (4) we get

u = 1− D

x1x2⋆
, (8)

which substituted in the first equation of (4) yields

ẋ1 = 1− x1⋆ −D

x1
=: w(x1). (9)

Proceeding as done for the case above we get

w′(x1)|x1=x1⋆
=

x1⋆ −D

x21⋆
.

The proof is completed noting from (5) that x1⋆ = D(1 + 1
x2⋆

) > D and the slope is,
again, positive. ���
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The proof that the zero dynamic of (4) with respect to x1−x1⋆ is unstable invalidates
the stability claim made in Section IV of (Kwasinski & Krein, 2007). In this paper,
a standard PBC is designed fixing x1 = x1⋆. It is well-known (Ortega et al., 1998)
that this kind of controller implements an inversion of the systems zero dynamics,
therefore the controller will be unstable if the zero dynamics is unstable, which is the
case of the PBC of (Kwasinski & Krein, 2007). The interested reader is referred to
(He et al., 2017) for further details on this problem and a discussion of a similar—
unfortunate—situation in other papers of PBC for power converters reported in the
literature.

3. Interconnection and Damping Assignment Passivity-based Controller

In this section, the IDA-PBC approach is proposed to stabilize the buck-boost con-
verter feeding a CPL by assuming the powerD is known. This condition is later relaxed
in Proposition 4.1 where an estimator of D is added to the IDA-PBC.

To make the paper self-contained we present below the main result of the IDA-PBC
methodology and give its proof. For more details on IDA-PBC we refer the reader to
(Ortega & Garcia-Canseco, 2004).

Proposition 3.1. Consider the nonlinear system

ẋ = f(x) + g(x)u (10)

with state x ∈ R
n and control u ∈ R

m and a desired operating point

x⋆ ∈ {x ∈ R
n | g⊥(x)f(x) = 0},

where g⊥(x) is a full rank left annihilator of g(x). Fix the target dynamics as

ẋ = Fd(x)∇Hd(x), (11)

where ∇Hd(x) :=
(

∂Hd(x)
∂x

)⊤
with the function Hd(x) a solution of the PDE

g⊥(x) [f(x)− Fd(x)∇Hd(x)] = 0, (12)

verifying

x⋆ = argmin{Hd(x)}, (13)

and the matrix Fd(x) is such that

F⊤
d (x) + Fd(x) < 0. (14)

The system (10) in closed-loop with

u = ū(x) := [g⊤(x)g(x)]−1g⊤(x)[Fd(x)∇Hd(x)− f(x)] (15)

has an asymptotically stable equilibrium at x⋆ with strict Lyapunov function Hd(x)
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Proof. From the fact that the n×nmatrix

[

g⊤(x)
g⊥(x)

]

is full rank we have the following

equivalence

f(x) + g(x)ū(x) = Fd(x)∇Hd(x) ⇔ (12), (15).

Hence, the closed-loop is given by (11). Now, (13) ensures Hd(x) is positive definite
(with respect to x⋆). Computing the derivative of Hd(x) along the trajectories of (11)
and invoking (14) we get

Ḣd = (∇Hd(x))
⊤Fd(x)∇Hd(x) < 0, ∀x 6= x⋆

and, therefore, Hd(x) is a strict Lyapunov function for the closed-loop system com-
pleting the proof. ���

The proposition below is a direct application of IDA-PBC that provides a solution
to our problem.

Proposition 3.2. Consider the average model of the DC-DC buck-boost converter
with a CPL (4) with D known and satisfying Assumption 2. Fix x2⋆ ∈ R>0 and
compute x1⋆ ∈ R>0 via (6). The IDA-PBC

u =ū(x,D, k1) :=
1

x21 + (x2 + 1)2

(

x2(x2 + 1) + x1(x1 −
D

x2
)−

(x2(x2 + 1)

x1
+

2x1x2
x2 + 1

)

(

k1x1
(

2(k2 + x21) + x22 −
D(1 + x2)

2x21 + x22

)

+

√
2Dx1 arctan

x1
√

x2
1+

x2
2

2

(2x21 + x22)
3

2

)

+
1

2x2(2x21 + x22)
3

2

( 2x21
(x2 + 1)2

− 2x2

)(
√

2x21 + x22
(

2Dx1(1 + x2) + x2(2x
2
1 + x22)(−1 + 2k1x2(k2 + x21)

+ k1x
3
2)
)

+
√
2Dx22 arctan

x1
√

x21 +
x2
2

2

)

)

, (16)

where k1 is a tuning gain satisfying

k1 > max{k′1, k′′1}, (17)

where the constants k′1, k
′′
1 are defined in Appendix A in (A8) and (A11), respectively,

and the constant k2 is defined as1

k2 :=
1

k1









D(1 + x2⋆)

2x1⋆(2x21⋆ + x22⋆)
−

√
2Dx1⋆ arctan

x1⋆
√

x2
1⋆+

x2
2⋆

2

2x1⋆(2x
2
1⋆ + x22⋆)

3

2









− x22⋆
2

− x21⋆, (18)

ensures the following.

1Although x1⋆ is defined via (6), to simplify the notation, we have omitted this clarification in the definition
of k2.

7



P1: x⋆ is an asymptotically stable equilibrium of the closed-loop with Lyapunov func-
tion

Hd(x) = −1

2

(

x2 +
√
2D arctan

[
√
2x1
x2

])

−

D arctan





x1
√

x2
1+

x2
2

2





2
√

x21 +
x2
2

2

+
k1

2
(x21 +

x22
2

+ k2)
2.

(19)

P2: There exists a positive constant c such that the sublevel set of the function Hd(x)

Ωx := {x ∈ R
2
>0 | Hd(x) ≤ c}, (20)

is an estimate of the domain of attraction ensuring the state trajectories remain

in R
2
>0. That is, for all x(0) ⊂ Ωx, we have x(t) ⊂ Ωx,∀t ≥ 0, and limt→∞ x(t) =

x⋆.

���

The control (16) is, obviously, extremely complicated for a practical implementation.
This can be carried out doing an approximation, e.g., via polynomials or rational
functions, of this function for which standard symbolic software is readily available.

4. Adaptive IDA-PBC Using an Immersion and Invariance Power

Estimator

In this section, the case of unknown power D is considered and an estimator of this
parameter, based on the I&I technique (Astolfi et al., 2008), is presented.

Proposition 4.1. Consider the average model of the DC-DC buck-boost converter
with CPL (4) satisfying Assumptions 1 and 2 in closed-loop with an adaptive version
of the control (16) given as

u = ū(x, D̂, k1) (21)

where D̂(t) is an on-line estimate of D generated with the I&I estimator

D̂ =− 1

2
γx22 +DI (22)

ḊI =γx1x2(1− u) +
1

2
γ2x22 − γDI (23)

where γ > 0 is a free gain. There exists kmin
1 such that for all k1 > kmin

1 the overall

system has an asymptotically stable equilibrium at (x, D̂) = (x⋆,D) . Moreover, for all
initial conditions of the closed-loop system and all DI(0), we have

D̃(t) = e−γtD̃(0), (24)

where D̃ := D̂ −D is the parameter estimation error.

8



Proof. Differentiating D̃ along the trajectories of (4) and using (22) one gets

˙̃
D = −γx2ẋ2 + ḊI

= −γx1x2(1− u) + γD + ḊI .

Substituting (23) in the last equation yields

˙̃
D = γD +

1

2
γ2x22 − γDI

= −γD̃,

from which (24) follows immediately.

To prove asymptotic stability of (x, D̂) = (x⋆,D) we write the adaptive controller
(21) as

ū(x, D̂, k1) = ū(x,D, k1) + δ(x, D̃, k1),

where we define the mapping

δ(x, D̃, k1) := ū(x, D̃ +D, k1)− ū(x,D, k1),

and we underscore the fact that δ(x, 0, k1) = 0.
Invoking the proof of Proposition 3.2 the closed-loop system is now a cascaded

system of the form

ẋ = Fd(x)∇Hd(x) + g(x)δ(x, D̃, k1)

˙̃
D = −γD̃,

where

g(x) :=

(

x2 + 1
−x1

)

, (25)

is the systems input matrix. Now, D̃(t) tends to zero exponentially fast for all initial
conditions, and for sufficiently large k1, i.e., such that (17) is satisfied, the system above
with D̃ = 0 is asymptotically stable. Invoking well-known results of asymptotic sta-
bility of cascaded systems, e.g., Proposition 4.1 of (Sepulchre, Jankovic, & Kokotovic,
1997), completes the proof of (local) asymptotic stability. ���

5. Simulation Results

In this section the performance of the proposed adaptive IDA-PBC is illustrated via
some computer simulations. Moreover, its transient behavior is compared with the one
of a PD controller designed adopting the classical linearization technique.

In all simulations, we have chosen the system parameters given in
(Kwasinski & Krein, 2007), namely, P = 61.25W, C = 500µF, L = 470µH, E = 10V,
and fixed the desired equilibrium as x⋆ = (0.7423, 4). For simplicity, we simulate the
scaled system (4), for which we have D = 0.59384. Depending on the context, the
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plots are shown either for x or for (i, v)—that we recall are simply related by the
scaling factors given in (3).

5.1. PD controller

To underscore the limitations of the PD controller and the difficulties related with its
tuning we present now the local stability analysis of such a controller. From (4), we
obtain the error dynamics

ė1 = −(1− eu − u⋆)(e2 + x2⋆) + eu + u⋆

ė2 = (1− eu − u⋆)(e1 + x1⋆)−
D

e2 + x2⋆

where we define the errors

e1 := x1 − x1⋆, e2 := x2 − x2⋆, eu := u− u⋆,

and u⋆ :=
x2⋆

1+x2⋆
. A standard PD controller for the error dynamics is given by

eu = kpe1 + kde2, (26)

where kp, kd are tuning gains. Notice that, for the computation of x1⋆, the imple-
mentation of this controller requires the knowledge of D. The Jacobian matrix of the
closed-loop system ė = F (e), evaluated at the equilibrium point, is given by

J :=

(

∇e1F1(e) ∇e2F1(e)
∇e1F2(e) ∇e2F2(e)

)

∣

∣

∣

∣

∣

e=0

=

(

kp(1 + x2⋆) kd + kdx2⋆ − 1
1+x2⋆

1
1+x2⋆

− Dkp(1+x2⋆)
x2⋆

−D(−1+kdx2⋆(1+x2⋆))
x2
2⋆

)

,

where ∇eiFj(e) :=
∂Fj(e)
∂ei

. The matrix J is Hurwitz if and only if its trace is negative
and its determinant is positive, which are given by

tr(J) = kp(1 + x2⋆)− kdD(
1

x2⋆
+ 1) +

D

x22⋆

det(J) = kp
D

x22⋆
− kd +

1

(x2⋆ + 1)2
.

Defining the positive constants

m1 :=
x2⋆

D
, b1 :=

1

x2⋆ + x22⋆

m2 :=
D

x22⋆
, b2 :=

1

(1 + x2⋆)2
,

we can write the trace and determinant stability conditions as the two-sided inequality

m2kp + b2 > kd > m1kp + b1, (27)

which is a conic section in the plane kd − kp, that reveals the conflicting role of the
two gains. Notice that the extracted power D enters in the first slope m1 in the
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denominator, while it appears in the nominator in m2—rendering harder the gain
tuning task regarding this uncertain (and time-varying) parameter.

5.2. IDA-PBC vs PD: Phase plots and transient response

Since the system in closed-loop with the PD (26) and the (non-adaptive) IDA-PBC
(4) lives in the plane it is possible to get the global picture of the behavior of these
controllers drawing their phase plot.

Figure 2. Phase plot of the system with the IDA-PBC, three sublevel sets Ωx and
trajectories (red) for different initial conditions.

In Fig. 2 we show the phase plot of the IDA-PBC together with some trajectories for
different initial conditions (in red), and three sublevel sets Ωx—defined in (20)—that
ensure the trajectories remain in R

2
>0. The plot is shown for k1 = 0.01, which satisfies

(17) since, for this case, k′1 = −0.1205 and k′′1 = −0.0583. It is clearly seen that the
state trajectories for initial conditions starting in Ωx remain there and converge to
the desired equilibrium point. Moreover, it is obvious from the phase portrait that
the actual domain of attraction of this equilibrium—that ensures this key invariance
property—is much larger than the one predicted by the theory. However, as shown
in the plot, it cannot cover the whole positive orthant. Indeed, it is possible to show
that the closed-loop vector field has another equilibrium in R

2
>0 that corresponds to a

saddle point. To better illustrate this fact we show in Fig. 3 a zoom of the phase plot
around this unstable equilibrium.

In Fig. 4 we show the phase plot for the PD controller (26), whose parameters are
chosen as kp = −0.4, kd = −1.5 to satisfy the condition (27), which for the current
situation takes the form

0.037kp + 0.04 > kd > 6.7358kp + 0.0588.

The figure shows two trajectories—that have to be chosen very close to the
equilibrium—to ensure that the trajectories remain in R

2
>0 and converge to x⋆. Com-
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pared with Fig. 2, it is observed that the IDA-PBC provides a much bigger domain of
attraction and, moreover, gives an estimate for it. Other values for the gains kp and
kd are tried yielding similar inadmissible behavior.

Figure 3. Zoom of the phase plot of the system with the IDA-PBC around the saddle
point.

Figure 4. Phase portrait of the system with the PD controller and trajectories (red)
for two initial conditions x(0) ≈ x⋆.

Finally, Figs. 5 and 6 show the transient responses of the output voltage v and
the duty ratio u under the IDA-PBC and the PD controller with initial conditions
x(0) = (0.4, 3.9) and gains k1 = 0.01 for the former and kp = −0.4, kd = −1.5 for the

12



latter. It is seen that the IDA-PBC has a faster transient performance with a smaller
control signal.
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Figure 5. Output voltage for the IDA-PBC and the PD controller.

Figure 6. Duty ratio for the IDA-PBC and the PD controller.

5.3. Adaptive IDA-PBC with time-varying D

Fig. 7 shows the profiles of output voltage and inductor current for the adaptive IDA-
PBC—for different values of the control gain k1 and adaptation gain γ = 1—in the face
of step changes in the extracted power D. It is seen that increasing the control gain k1
reduces the convergence time of the output voltage. As shown in the figure, the output
voltage recovers very fast from the variations of the power D, always converging to
the desired equilibrium. This is due to the fact that, as predicted by the theory, the
power estimate converges—exponentially fast—to the true value independently of the
control signal. It should be remarked that the PD controller becomes unstable in this
scenario.

In Fig. 8 we show the step changes in the power D and the estimate D̂ for different
values of the adaptation gain, with the initial condition D̂(0) = D(0). As predicted by
the theory, for a larger γ, the speed of convergence of the estimator is faster. Notice,
however, that in the selection of γ, there is a tradeoff between convergence speed and
noise sensitivity.
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Figure 7. Response curves for the adaptive IDA-PBC with γ = 1 to changes in the
power D: (a) output voltage—with (b) and (c) zooms for it—and (d) the inductor
current.
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Figure 8. Transient performance of the estimate D̂ under step changes of the parameter
D for various adaptation gains γ and a zoom of the first step.

6. Conclusions

In this paper, we have addressed the challenging problem of regulation of the output
voltage of a buck-boost converter feeding a CPL with unknown power. First, assuming
the power is known, an IDA-PBC has been proposed. Subsequently, an on-line I&I
estimator with global convergence property has been presented to render the scheme
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adaptive, preserving the asymptotic stability property. We have also illustrated the
performance limitations of the classical PD controller stemming from the fact that,
due to the presence of the CPL, the system is non-minimum phase. Some realistic
simulations have been provided to confirm the effectiveness of the proposed method.

Although the great complexity of the exact expression of the controller stymies its
practical application, well-established and effective methods of function approximation
can be used to obtain a workable solution. Current research is under way in this
direction with the final aim of reporting a practical implementation. Another line of
research that we are currently pursuing is the addition of a current observer to remove
the need for its measurement, which is an issue of practical interest.
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Appendix A. Proof of Proposition 3.2

(P1) We will show that the control (16) can be derived using the IDA-PBC method
of Proposition 3.1 with the selection

Fd(x) :=

[

−x2

x1
− 2x2

x2+1
2x2

x2+1 − 2x1

(x2+1)2

]

, (A1)

that, for x ∈ R
2
>0, satisfies the condition (14).2

The system (4) can be rewritten in the form (10) with g(x) given in (25) and the
vector field

f(x) :=

( −x2
x1 − D

x2

)

.

Noting that the left annihilator of g(x) is g⊥(x) := [x1 x2 + 1], the PDE (12) takes
the form

[

x1 x2 + 1
]

(

[ −x2
x1 − D

x2

]

−
[

−x2

x1
− 2x2

x2+1
2x2

x2+1 − 2x1

(x2+1)2

]

∇Hd(x)

)

= 0,

which is equivalent to

−x2∇x1
Hd(x) + 2x1∇x2

Hd(x) = D − x1 +
D

x2
. (A2)

The solution of the PDE (A2) is easily obtained using a symbolic language, e.g., Maple
or Mathematica, and is of the form

Hd(x) = −1

2

(

x2 +
√
2D arctan

[
√
2x1
x2

])

−

D arctan





x1
√

x2
1+

x2
2

2





2

√

x21 +
x2
2

2

+Φ(x21 +
x22
2
).

where Φ(·) is an arbitrary function. Selecting this free function as

Φ(z) :=
k1

2
(z + k2)

2,

2It is well-known (Ortega & Garcia-Canseco, 2004) that a key step for the successful application of the method
is a suitable selection of this matrix, which is usually guided by the study of the solvability of the PDE (12).
See He et al. (2017) for some guidelines for its selection in this example.
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with k1 and k2 arbitrary constants, yields (19).
To complete the design it only remains to prove the existence of k1 and k2 that

verify (13). Towards this end, we first compute the gradient of Hd(x) as

∇Hd =

















−D(1+x2)
2x2

1+x2
2

+ k1x1(2(k2 + x21) + x22) +

√
2Dx1 arctan





x1
√

x2
1
+

x2
2
2





(2x2
1+x2

2)
3
2

√
2x2

1+x2
2

(

2Dx1(1+x2)+x2(2x2
1+x2

2)
(

−1+2k1(k2+x2
1)x2+k1x

3
2

)

)

+
√
2Dx2

2 arctan





x1
√

x2
1
+

x2
2
2





2x2(2x2
1+x2

2)
3
2

















(A3)

Evaluating (A3) at the equilibrium and selecting k2 as given in (18) yields

∇Hd|x=x⋆
=

[

0
D +Dx2⋆ − x1⋆x2⋆

]

. (A4)

Invoking (6) one gets ∇Hd|x=x⋆
= 0.

The Hessian of Hd(x) is given by

∇2Hd =

[

∇2
x1
Hd ∇2

x1x2
Hd

∇2
x2x1

Hd ∇2
x2
Hd

]

, (A5)

where

∇2
x1
Hd =

1

(2x21 + x22)
3

(

(2x21 + x22)
(

2Dx1(3 + 2x2) + k1(2x
2
1 + x22)

2(2k2 + 6x21 + x22)
)

+
√
2D(−4x21 + x22)

√

2x21 + x22 arctan





x1
√

x21 +
x2
2

2





)

∇2
x2x1

Hd =∇2
x1x2

Hd =
1

x2(2x
2
1 + x22)

3

(

2k1x1x
2
2(2x

2
1 + x22)

3 +D
(

2x21x
2
2 − 4x41(1 + x2)

+ x42(2 + x2)
)

− 3
√
2Dx1x

2
2

√

2x21 + x22 arctan
x1

√

x21 +
x2
2

2

)

∇2
x2
Hd =

1

2x22(2x
2
1 + x22)

3

(

(2x21 + x22)
(

k1
(

2(k2 + x21) + 3x22
)

(2x21 + x32)
2 − 4Dx1

(

x21+

x22(2 + x2)
)

)

+ 2
√
2D(x21 − x22)x

2
2

√

2x21 + x22 arctan





x1
√

x21 +
x2
2

2





)

.

Replacing k2 in (A5) and evaluating it at the equilibrium point x = x⋆, we obtain

∇2Hd

∣

∣

∣

∣

∣

x=x⋆

=

[

∇2
x1
Hd|x=x⋆

∇2
x1x2

Hd|x=x⋆

∇2
x2x1

Hd|x=x⋆
∇2

x2
Hd|x=x⋆

]

, (A6)
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where

∇2
x1
Hd|x=x⋆

=
1

x1⋆(2x21⋆ + x22⋆)
5

2

(

√

2x21⋆ + x22⋆

(

4k1x
3
1⋆(2x

2
1⋆ + x22⋆)

2 +D
(

x22⋆(1+

x2⋆) + x21⋆(8 + 6x2⋆)
)

)

− 6
√
2Dx31⋆ arctan

x1⋆
√

x21⋆ +
x2
2⋆

2

)

∇2
x2x1

Hd|x=x⋆
=∇2

x1x2
Hd|x=x⋆

=
1

x2⋆(2x21⋆ + x22⋆)
3

(

2k1x1⋆x
2
2⋆(2x

2
1⋆ + x22⋆)

3 +D
(

− 4x41⋆

2x21⋆x
2
2⋆ − 4x41⋆x2⋆ + x42⋆(2 + x2⋆)

)

− 3
√
2Dx1⋆x

2
2⋆

√

2x21⋆ + x22⋆×

arctan
x1⋆

√

x21⋆ +
x2
2⋆

2

)

∇2
x2
Hd|x=x⋆

=
1

2x1⋆x22⋆(2x
2
1⋆ + x22⋆)

5

2

(

√

2x21⋆ + x22⋆

(

2k1x1⋆x
4
2⋆(2x

2
1⋆ + x22⋆)

2 +D
(

x42⋆

− 4x41⋆ + x52⋆)− 2x21⋆x
2
2⋆(3 + x2⋆)

)

)

− 3
√
2Dx1⋆x

4
2⋆ arctan

x1⋆
√

x21⋆ +
x2
2⋆

2

)

.

Some lengthy, but straightforward, calculations prove that ∇2
x1
Hd|x=x⋆

> 0 holds if
and only if

k1 > k′1, (A7)

where k′1 is defined as

k′1 :=

6
√
2Dx1⋆ arctan

x1⋆√
x2
1⋆

+1
2
x2
2⋆√

2x2
1⋆+x2

2⋆

−D
(

x22⋆(1 + x2⋆) + x21⋆(8 + 6x2⋆)
)

4x31⋆(2x
2
1⋆ + x22⋆)

2
. (A8)
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Moreover, the determinant of (A6) is given by

det
(

∇2Hd

∣

∣

x=x⋆

)

=
1

2x21⋆x
2
2⋆(2x

2
1⋆ + x22⋆)

4

(

(

4k1x
3
1⋆(2x

2
1 + x22)

2 +D
(

x22⋆(1 + x2⋆)+

x21⋆(8 + 6x2⋆)
)

−

6
√
2Dx31⋆ arctan

x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆

)(

2k1x1⋆x
4
2⋆(2x

2
1⋆+

x22⋆)
2 −

3
√
2Dx1⋆x

4
2⋆ arctan

x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆
+D

(

x42⋆(1 + x2⋆)− 4x41⋆−

2x21⋆x
2
2⋆(3 + x2⋆)

)

)

)

− 1

x22⋆(2x
2
1⋆ + x22⋆)

4

(

2k1x1⋆x
2
2⋆(2x

2
1⋆ + x22⋆)

2+

D
(

x22⋆(2 + x2⋆)− x21⋆(2 + 2x2⋆)
)

−

3
√
2Dx1x

2
2 arctan

x1
√

x2
1⋆+

x2
2⋆

2

√

2x21 + x22

)2

=
1

2x21⋆x
2
2⋆(2x

2
1⋆ + x22⋆)

4

(

(

4k1x
3
1⋆(2x

2
1⋆ + x22⋆)

2 +D
(

x22⋆(1 + x2⋆)+

x21⋆(8 + 6x2⋆)
)

−

6
√
2Dx31⋆ arctan

x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆

)(

2k1x1⋆x
4
2⋆(2x

2
1⋆+

x22⋆)
2 +D

(

− 4x41⋆ + x42⋆(1 + x2⋆)− 2x21⋆x
2
2⋆(3 + x2⋆)

)

−
3
√
2Dx1⋆x

4
2⋆ arctan

x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆

)

− 2x21⋆

(

2k1x1⋆x
2
2⋆(2x

2
1⋆ + x22⋆)

2+

D
(

x22⋆(2 + x2⋆)− x21⋆(2 + 2x2⋆)
)

−

3
√
2Dx1x

2
2 arctan

x1
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆

)2
)

=
1

2x21⋆x
2
2⋆(2x

2
1⋆ + x22⋆)

4

(

k1D(2x21⋆ + x22⋆)
2h(x⋆) + 2D2

(

x22⋆(1 + x2⋆)+

x21⋆(8 + 6x2⋆)
)(

x42⋆(1 + x2⋆)− 4x41⋆ − x21⋆x
2
2⋆(3 + x2⋆)

)

− 2x21⋆
(

x22⋆

(2 + x2⋆)− 2x21⋆(2 + 2x2⋆)
)2 − 3

√
2x1⋆x

4
2⋆

(

x22⋆(1 + x2⋆) + x21⋆(8+

6x2⋆)
)

arctan x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆
− 6

√
2Dx31⋆

(

− 4x41⋆ + x42⋆(1 + x2⋆)

− 2x21⋆x
2
2⋆(3 + x2⋆)

)

arctan x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆

)
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where h(x⋆) is defined as

h(x⋆) := 4x31⋆ + 4x51⋆x
3
2⋆ + 2x31⋆x

4
2⋆ + x1⋆x

2
2⋆ + x1⋆x

7
2⋆ − 8x71⋆ − 4x51⋆x

2
2⋆. (A9)

Consequently, det
(

∇2H
∣

∣

x=x⋆

)

> 0 holds provided

k1D(2x21⋆ + x22⋆)
2h(x⋆)+

2D2
(

x22⋆(1 + x2⋆) + x21⋆(8 + 6x2⋆)
)(

x42⋆(1 + x2⋆)− 4x41⋆ − x21⋆x
2
2⋆(3 + x2⋆)

)

− 2
(

x22⋆(2+

x2⋆)− 2x21⋆(2 + 2x2⋆)
)2 − 3

√
2x1⋆x

4
2⋆

(

x22⋆(1 + x2⋆) + x21⋆(8 + 6x2⋆)
)

arctan x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆
−

6
√
2Dx31⋆

(

− 4x41⋆ + x42⋆(1 + x2⋆)− 2x21⋆x
2
2⋆(3 + x2⋆)

)

arctan x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆
> 0. (A10)

Our final task is to select k1, which stands in the first left hand term above, to ensure
(A10) holds.

First, we notice that h(x⋆) may be factored as

h(x⋆) = 4x31⋆ + 2x31⋆x
4
2⋆ + x1⋆x

2
2⋆ + x1⋆x

7
2⋆ + 4x51⋆[x

3
2⋆ − (2x21⋆ + x22⋆)],

with the term in brackets being positive in most practical applications. Consequently,
since all other terms are positive, we have that h(x⋆) > 0 and the inequality (A10) is
equivalent to k1 > k′′1 , with the latter defined as

k′′1 := − 1

D(2x21⋆ + x22⋆)
2h(x⋆)

×
(

2D2
(

x22⋆(1 + x2⋆) + x21⋆(8 + 6x2⋆)
)(

− 4x41⋆ + x42⋆(1+

x2⋆)− x21⋆x
2
2⋆(3 + x2⋆)

)

− 2x21⋆
(

x22⋆(2 + x2⋆)− 2x21⋆(2 + 2x2⋆)
)2 − 3

√
2x1⋆x

4
2⋆

(

x22⋆(1+

x2⋆) + x21⋆(8 + 6x2⋆)
)

arctan x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆
− 6

√
2Dx31⋆

(

− 4x41⋆ + x42⋆(1 + x2⋆)

− 2x21⋆x
2
2⋆(3 + x2⋆)

)

arctan x1⋆
√

x2
1⋆+

x2
2⋆

2

√

2x21⋆ + x22⋆

)

. (A11)

Combining this constraint with (A7) allows us to conclude that k1 > max{k′1, k′′1}
ensures ∇2H|x=x⋆

> 0.
The proof of P1 is completed showing that the IDA-PBC (16) results replacing the

data in (15).
(P2) The proof of this claim follows immediately noting that we have shown above

that the function Hd(x) has a positive definite Hessian evaluated at x⋆, therefore it
is convex. Consequently, for sufficiently small c, the sublevel set Ωx defined in (20) is
bounded and strictly contained in R

2
>0. The proof is completed recalling that sublevel

sets of strict Lyapunov functions are inside the domain of attraction of the equilibrium.
���
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