Optimisation of multi-year planning strategies to better integrate renewable energies and new electricity uses in the distribution grid
Bruno Barracosa, Héloïse Baraffe, Julien Bect, Gilles Malarange, Juliette Morin, Emmanuel Vazquez

To cite this version: Bruno Barracosa, Héloïse Baraffe, Julien Bect, Gilles Malarange, Juliette Morin, et al.. Optimisation of multi-year planning strategies to better integrate renewable energies and new electricity uses in the distribution grid. Journées annuelles du GdR MASCOT NUM (MASCOT NUM 2019), Mar 2019, Rueil-Malmaison, France. hal-02481410

HAL Id: hal-02481410
https://hal-centralesupelec.archives-ouvertes.fr/hal-02481410
Submitted on 21 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License
OPTIMISATION OF MULTI-YEAR PLANNING STRATEGIES TO BETTER INTEGRATE RENEWABLE ENERGIES AND NEW ELECTRICITY USAGES ON THE DISTRIBUTION GRID

1. CONTEXT
• Future of electricity distribution: new usages in the distribution grid, e.g., electric vehicles, distributed energy generation, local storage units...
• How to adapt the grid to these new usages at lowest cost?

2. DECISION TOOL
• PARADIS (EDF R&D and CentraleSupélecL2S, [DUT15]) is a tool to simulate planning strategies for different scenarios

 • Scenario generator: creates realistic random scenarios of RE’s arrivals and the consumption and production profiles
 • Strategy planning: defines the decision tree used by the Distribution System Operator (DSO)
 • Simulator: simulates the evolution of the grid
 • Balance: computes the final costs of the planning strategy

 • For a prescribed planning strategy:

 - One-parameter strategy ($\tan \phi$)
 - Two-parameter strategy ($\tan \phi$ and curtailment)

3. PLANNING STRATEGIES
Main characteristics of the problem
• Expensive simulations (e.g., 5 minutes for one simulation)
• Continuous parameters
• Stochastic simulator (scenario-based)
• Conflicting objectives
• Impact of extreme values

Different formulations of the problem
• Mono-objective optimisation: $\min q_\alpha(x)$, with $q_\alpha(x)$ an α-quantile (or superquantile) of the cost $Z(x)$.
• Multi-objective and/or constrained optimisation with more than one cost function $Z_j(x)$, $Z_k(x)$, ...
• Robust optimisation: e.g., $\min_x q_\alpha(x + \epsilon)$, with ϵ a random perturbation of the parameters
• Quasi-optimal regions:
 $\Gamma = \{x \in \mathbb{R}^n | q_\alpha(x) \leq q^* + \Delta \alpha; q^*$ = $\min_x q_\alpha(x)\}$
 with $\Delta \alpha$ a constant that defines the accepted level of quasi-optimality, or
 $\Gamma = \{x \in \mathbb{R}^n | q_\alpha(x) \leq q^*; q^*$ = $\inf_{x \in \mathbb{R}^n} \{x' \in \mathbb{R}^n | q_\alpha(x') \leq s \geq \beta\}\}$

4. RESEARCH IDEAS
• Bayesian Optimization!
• And other ideas:
 o Scenario min-max optimisation [CAR15]
 o Quantile estimation [LAB16]
 o Reliability-based design optimisation [DUB11]
 o Bayesian algorithms for best arm identification [RUS16]
 o Informational approach to global optimisation [VIL09]

SOME REFERENCES

