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Abstract—Radio beacons, at around 115 MHz (VHF, VOR), 

are used as opportunity donors in a passive radar 

configuration. Full-wave simulation of three categories 

(according to size) of aircrafts shows that their bistatic RCS 

are statistically comparable without any additional 

information but perform differently in time (while flying). This 

discrepancy can be exploited to recognize the aircrafts among 

the categories. Measurements confirm these ideas and indicate 

that it may be possible to differentiate the aircrafts among the 

same category. Encouraging initial results were obtained using 

Convolutional Neural Networks to classify airplane categories 

combining simulated bistatic RCS results and real trajectories 

(collected from ADS-B data). 

Keywords—RCS, bistatic, passive radar, VHF, full-wave 

simulation, aircraft 

I. INTRODUCTION 

 To facilitate the flight navigation, radio beacons, as 
VORs (VHF Omnidirectional Range) since 1940’s, have 
been installed around the world. The main advantage of 
VORs is that they transmit an omnidirectional signal, 
horizontal polarization, in the VHF band (108 – 118 MHz) 
[1] [2] making it ideal, as opportunity sources, for passive 
radar applications [3] [4]. In this band the wavelength is 
about 2.6 m which means that the size of commercial 
airplanes is on the order of tens of wavelengths. By 
exploiting the Automatic Dependent Surveillance-Broadcast 
(ADS-B) data broadcasted (L band) by the airplanes, the 
position of the airplane can be known and its radar cross 
section (RCS) can be obtained, as in [3], and it is of the order 
of tens of dBsm. Work has also been done to classify, 
according to size (small, medium, large), the airplanes by 
exploiting an aggregation of RCS of the airplanes [4] [5]. 
Contrary to optical recognition, characterization of an 
airplane by its RCS signature is challenging in VHF band, 
but independent of daytime and weather.  

 In this paper, we highlight, through simulation and 
measurements, discriminant RCS patterns for different sizes 
of planes. First, we present some simulation results of RCS 
of three airplanes (small, medium, large) in order to 
understand better their similarities and differences. The 
second part presents the measurement setup and collected 
signals, showing a good agreement with the simulation 
results. The third part focus on the classification of airplanes 
using convolutional neural networks (CNN) with 2D images 
(RCS values vs. aspect and bistatic angle). This 
representation seems to be relevant based on the obtained 
results. Finally, some conclusions and perspectives are 
presented.  

TABLE I.   AIRPLANE MODELS DIMENSIONS 

II.  MODELLING AND SIMULATION OF AIRPLANES 

A. Airplane models 

The dimensions and number of motors of each airplane 
model can be seen in the Tab. I (see Fig. 1 for a scale). The 
dimensions of the large, medium and small models, 
respectively. Perfect electrical conductor (PEC) was 
considered for the models.  

Fig. 1.  From top to bottom: large, medium and small airplane models 

used in FEKO. 

Fig. 2. Simulation setup of airplane models, PEC, in FEKO and definition 

of spherical coordinates used in the simulations. 

Model size Wingspan [m] Length [m] # total of motors 

Small 24 29 2 

Medium 33.5 40 2 

Large 51 60 4 



 

 

 

B. Simulation results - RCS 

A full-wave simulation using method of moments (MoM) 
was carried out in FEKO. See Fig. 2 for the simulation setup 
and spherical coordinates used for the simulation. An 
incident horizontally polarized (along φ axis) plane wave 

was considered with incident direction (θi, φi) ∈ [90, 180] × 

[0, 180] (due to the symmetry of the planes, incident angles 
φi larger than 180 are obtained from the original simulations) 

and scattered angles (θs, φs) ∈ [0, 180] × [0, 360], in both 

cases with angular step of 1deg. Fig. 3 shows the histograms 
of bistatic RCS of the airplanes models (small, medium and 
large) for HH (φ-φ) and HV (φ-θ) cases and for all scattered 
and incident angles considered lines above. We can see that 
most of the RCS values are concentrated between 0 dBsm 
and 40 dBsm (in accordance with [3], Airbus 321 is 
comparable to the model of medium size used lines above). 
Most importantly, in global, RCS values between the 
airplanes are very similar, making the discrimination difficult 
from RCS only. Additionally, there is no much difference, in 
global, between RCS values for the HH and HV cases. Since 
the VOR transmitter uses H polarization, a reception using V 
polarization helps to strongly reduce the direct path.  

Fig. 3. Histograms of bistatic RCS (dBsm) obtained by simulation, HH (φ-

φ, top) and HV (φ-θ, bottom), for small, medium and large airplane models. 

C. Simulation results – Power time series 

Using the simulation results and ADS-B data from the 
airplanes, we can also synthesize the variation of the bistatic 
RCS of the planes for the trajectories of the planes. For this 

case, we consider a passive radar configuration where the 
transmitter (Tx) is the RBT VOR (close to Rambouillet), and 
the receiver (Rx) is near CentraleSupélec – Gif.  

Fig. 4. Position of Tx (RBT VOR) in green, Rx (near CentraleSupélec-

Gif) in red, plane’s trajectory in blue (ADS-B data for 6.3 minutes) and 
“zoom” of trajectory in thick red line (between timestamps 3 and 5 min). 

The plane is moving from left to right. Lambert 93 coordinates (meters) 

Fig. 5. Synthesis of received power (HH and HV, from top to bottom, 

respectively) near CentraleSupélec, for 2 min, considering an emitted 
power of 40dBW by RBT VOR. The position of the plane, considered for 

this synthesis, is the one labeled as “zoom” (thick red line) in Fig. 4. 



 

Fig. 4 shows the position of the Tx, Rx, the plane’s 
trajectory (obtained from real ADS-B data for about 6 
minutes) and a “zoom” version of the trajectory (between 3.5 
and 5.5 minutes), all of them in Lambert 93 coordinates 
(spatial units in meters). The plane moves from left to right 
(approaching landing at Orly airport). Using this “single” 
trajectory, the received power (considering a transmitting 
power of 40 dBW) versus time (in min, 2Hz of sampling) is 
shown for the three planes and polarizations (HH, HV) in 
Fig. 5. 

From Fig. 5, we can see that the ranges of values of 
received power, per polarization, are similar (as expected 
from the histograms, cf. Fig. 3) besides a peak of 5 dB 
(around 3.85 min) above the rest of the other cases, which 
corresponds to the large airplane. The RCS (not shown) for 
all the cases is around 30 dBsm for HH polarization and 15 
dBsm for HV polarization.  

What is different, globally, is the frequency of fluctuation 
of the received power (see Fig. 5), which is different 
according to the size of the airplane: high frequency for large 
plane, medium frequency for medium plane and low 
frequency for small plane, and for both polarizations. This is 
somewhat expected since, due to the movement of plane, the 
space of bistatic RCS of the planes is swept with the same 
rate. The frequency of fluctuations indicates, in this case, the 
angular frequency due to sweeping throughout the peaks 
(width and number) of the scattered power due to the 
illumination of the object: large objects will induce more and 
finer peaks compared to smaller objects. 

We can also see that the received power for the HH 
polarization is about 15 dB higher than the HV polarization 
(this might not always be the case, see histograms, Fig. 3). 
We note that in all the cases we have used a single trajectory 
and single movement dynamics (same speed, orientation), 
hence the frequency of fluctuations of RCS (or received 
power) in real life will depend on the speed of the planes. In 
order to avoid this problem an estimation of the position of 
the airplane may be used to transform the frequency of 
fluctuations versus time into angular frequency. 

III. MEASUREMENTS 

A. Measurement setup 

To collect the scattered power from the airplane, a 
receiver was installed close to CentraleSupélec-Gif. A VHF 
antenna with horizontal polarization was used. A SDR 
receiver was also used to collect complex signals, centered at 
VOR frequency (114.7 MHz), and connected to a PC 
(commanded by a Python script). An ADS-B decoder was 
also used to retrieve the trajectory of the airplane and type of 
the airplane. Note that the trajectories of the planes (for this 
data collection) are very similar: approaching Orly-airport. 

B. Examples of Collected data 

Fig. 6 shows the evolution of relative received power 
(after pre-processing) in dB for 4 airplanes and two 
categories: small and medium. The planes are approaching 
Orly-airport, and, hence, following a similar flight path 
(although not exactly same path, speed, and attitude). The 
received power in Fig. 6 contains the reflected signal on the 
airplane (from RBT VOR) and the “direct” path but strongly 

attenuated (level of about -66 dB) due to losses in the 
propagation.  

From Fig. 6 we can appreciate the differences on the 
power evolution between categories: in amplitude in general, 
as well as in relative level between the main peak (highest 
level) and secondary ones (close to the main peak). At this 
stage, we recall that we cannot compare the frequency of 
fluctuations on the received power due to the different speeds 
of the plane. It can also be seen that there are clearly 
differences between the two airplanes of the category small. 
Note as well that the power evolutions related to the medium 
category (Boeing 737) are very similar since they have 
similar flight path and attitude.  

Fig. 6. Received relative level (dB) of power, HH, after pre-processing of 

reflected signal on airplanes approaching Orly-airport. Two categories are 

present: top with small (jet CRJ701) and medium size (Boeing 737) 

airplane; bottom with medium (Boeing 737) and small size airplane 

(airplane with propeller ATR-42 500). 

It is interesting to note that, for the case of Boeing 737 
from Fig. 6 which is comparable to the category medium 
(red line in Fig. 5, see also Tab. I) for the simulations, the 
difference of level in dB between the peak (-62 dB, relative) 
at the left side of the green circle and the maximum peak (-
57 dB, relative) is about 7 dB, which is similar to the 
difference of levels for the category medium (red line) in Fig. 
5 (see peak at 3.2 min, -80 dBsm and peak at 3.8 min, -72 
dBsm). 

TABLE II.  CNN ARCHITECTURE 

Input Size (181 x 361) 

Convolutional 

layers 

Conv (6x6 (x32 channels)), ReLu MaxPool (3x3) 

and dropout (0.5) 

Conv (6x6 (x64 channels)), ReLu MaxPool (3x3) 

and dropout (0.5) 

Conv (6x6 (x128 channels)), ReLu MaxPool (3x3) 

and dropout (0.5) 

Fully 

connected 

layers 

Fully connected (256), ReLu 

Fully connected (3), Softmax 

Output 3 

 



 

IV. RESULTS OF CLASSIFICATION WITH CNN 

Similar to section II.C, we collected 269 trajectories 
(using ADS-B data) over which the bistatic RCS are 
synthesized for each trajectory, 3 categories (or classes) of 
plane sizes, and 11 VORs (around Paris). A natural 
representation of these data is considering images of RCS 
values vs. bistatic and aspect angles [4][5]. Since CNN has 
usually shown good results for image classification (AlexNet 
[6], VGG [7], GoogleNet [8],  ResNet [9]), we propose a 
similar architecture (see Tab. II for details). In order to train 
the CNN, a 2D image (bistatic and aspect angle, 181 x 361 
pixels, 1 pixel per angle) was constructed using the RCS 
variations for each trajectory and for the 11 VORs (see Fig. 
7) where the colors represent the bistatic RCS values in 
dBsm (for VV polarization) for each coordinate. Preliminary 
results considering a single VOR at a time gave very low 
successful rates of classification due to the high sparsity of 
the images. 

The blue zones in Fig. 7 correspond to the absence of 
ADS-B data (hence, no RCS is attributed to those 
coordinates). In this way a total of 807 images (269 
trajectories times 3 categories) was fed to the CNN. The 
dataset was randomly splitted in 3 parts: training dataset 
(70%), validation dataset (15%) and test dataset (15%). Tab. 
III shows the confusion matrix for the classification of 
validation and data set (242 samples). From this table, 
recognition of small class of airplanes seems better than 
medium and large class. 

Fig. 7. 2D image of bistatic RCS variations (in color) for bistatic and 

aspect angles, 181 x 361 pixels (similar to [5]), for a single trajectory and 

11 VORs (hence, 11 different illumination angles of the airplane). 

TABLE III.  CONFUSION MATRIX 

Predicted 

class 

Actual Class 

Small Medium Large 

Small 96.2% 1.2% 0% 

Medium 3.8% 84.5% 8.7% 

Large 0% 14.3% 91.3% 

V. CONCLUSIONS AND PERSPECTIVES 

It has been shown, through simulations, that, globally, the 
bistatic RCS of airplanes of different sizes (large, medium 
and small) are similar, which makes difficult their 
discrimination on the sole basis of RCS value. It has been 
also shown that it is more sensible to look for the angular 
frequency (extraction of this information can be done as in 
[3]) of the bistatic RCS when the airplane is moving in order 
to discriminate the planes by sizes (larger planes will scatter 
power with finer and more peaks). These simulation results, 
can be used to synthesize bistatic RCS evolution for arbitrary 
trajectories (for example based on real trajectories) and 
include many VORs and different positions of receiver, in 
order to consider multiple scenarios based on real data to 
train neural networks (which need a large collection of data 
that many times are not available by measurement) on the 
recognition of airplanes.  Measurements have been carried 
out in a passive radar configuration (Tx RBT VOR, Rx near 
CentraleSupélec – Gif-sur-Yvette) to collect received 
(scattered) power from the airplanes that are landing at Orly-
airport. It has been shown that, effectively, there are enough 
differences on the received power from the airplanes to 
differentiate them. It might possible to differentiate among 
planes of the same category. Finally, some results were 
obtained using a CNN architecture to classify the airplanes 
by sizes using the simulation results (considering 269 
trajectories, 3 classes and 11 VORs). The results provide a 
good, and encouraging, rate of classification. 
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