A. H. Lefebvre, Gas turbine combustion, 1998.

B. Fiorina, D. Veynante, and S. Candel, Modeling combustion chemistry in large eddy simulation of turbulent flames, Flow Turbl. Combust, vol.94, issue.1, pp.3-42, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219272

N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci, vol.10, issue.3, pp.319-339, 1984.

O. Gicquel, N. Darabiha, and D. Thévenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst, vol.28, issue.2
URL : https://hal.archives-ouvertes.fr/hal-00256701

J. V. Oijen, F. Lammers, and L. D. Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame, vol.127, issue.3, pp.2124-2134, 2001.

C. D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech, vol.504, pp.73-97, 2004.

B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation, Combust. Flame, vol.140, issue.3, pp.147-160, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00126045

B. Franzelli, B. Fiorina, and N. Darabiha, A tabulated chemistry method for spray combustion, Proc. Combust. Inst, vol.34, issue.1, pp.1659-1666, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01272971

S. Vajda, P. Valko, and T. Turányi, Principal component analysis of kinetic models, Int. J. Chem. Kinet, vol.17, issue.1, pp.55-81, 1985.

T. Lu and C. K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst, vol.30, issue.1, pp.1333-1341, 2005.

P. Pepiot-desjardins and H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame, vol.154, pp.67-81, 2008.

S. Lam, Using CSP to understand complex chemical kinetics, Combust. Sci. Technol, vol.89, issue.5-6, pp.375-404, 1993.

V. Lepage, Elaboration d'une méthode de réduction de schémas cinétiques détaillés. Application aux mécanismes de combustion du gaz naturel et du n-décane

T. Løvås, D. Nilsson, and F. Mauss, Automatic reduction procedure for chemical mechanisms applied to premixed methane/air flames, Proc. Combust. Inst, vol.28, issue.2, pp.1809-1815

J. Luche, Elaboration of reduced kinetic models of combustion, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00636023

T. Lu and C. K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry, Combust. Flame, vol.154, issue.4, pp.761-774, 2008.

T. Jaravel, E. Riber, B. Cuenot, and G. Bulat, Large eddy simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction, Proc. Combust. Inst, vol.36, issue.3, pp.3817-3825, 2017.

N. Jaouen, L. Vervisch, P. Domingo, and G. Ribert, Automatic reduction and optimisation of chemistry for turbulent combustion modelling: impact of the canonical problem, Combust. Flame, vol.175, pp.60-79, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611160

C. K. Westbrook and F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol, vol.27, issue.1-2, pp.31-43, 1981.

W. Jones and R. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combust. Flame, vol.73, issue.3, pp.233-249, 1988.

B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, A two-step chemical scheme for kerosene-air premixed flames, Combust. Flame, vol.157, issue.7, pp.1364-1373, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01272968

W. Polifke, W. Geng, and K. Döbeling, Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms, Combust. Flame, vol.113, issue.1-2, pp.119-134, 1998.

C. Martin, Etude énergétique des instabilités thermo-acoustiques et optimisation génétique des cinétiques réduites, 2005.

A. Abou-taouk, S. Sadasivuni, D. Lörstad, and L. Eriksson, Evaluation of global mechanisms for LES analysis of SGT-100 DLE combustion system, Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 1B: Combustion, Fuels and Emissions, 2013.

B. Farcy, A. Abou-taouk, L. Vervisch, P. Domingo, and N. Perret, Two approaches of chemistry downsizing for simulating selective non catalytic reduction deno x process, Fuel, vol.118, pp.291-299, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612393

S. Hermeth, G. Staffelbach, L. Y. Gicquel, V. Anisimov, C. Cirigliano et al., Bistable swirled flames and influence on flame transfer functions, Combust. Flame, vol.161, issue.1, pp.184-196, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00930081

A. Abou-taouk, B. Farcy, P. Domingo, L. Vervisch, S. Sadasivuni et al., Optimized reduced chemistry and molecular transport for Large Eddy Simulation of partially premixed combustion in a gas turbine, Combust. Sci. Technol, vol.188, issue.1, pp.21-39, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01611211

P. S. Volpiani, T. Schmitt, and D. Veynante, Large eddy simulation of a turbulent swirling premixed flame coupling the TFLES model with a dynamic wrinkling formulation, Combust. Flame, vol.180, pp.124-135, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01643053

M. Cailler, N. Darabiha, D. Veynante, and B. Fiorina, Building-up virtual optimized mechanism for flame modeling, Proc. Combust. Inst, vol.36, issue.1, pp.1251-1258, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541938

A. Er-raiy, Z. Bouali, J. Réveillon, and A. Mura, Optimized single-step (oss) chemistry models for the simulation of turbulent premixed flame propagation, Combust, Flame, vol.192, pp.130-148, 2018.

M. Cavazzuti, Deterministic optimization, pp.77-102, 2013.

G. S. Beveridge and R. S. Schechter, Optimization, theory and practice, 1970.

J. E. Gentle, W. K. Härdle, and Y. Mori, Handbook of computational statistics: concepts and methods, 2012.

L. Elliott, D. Ingham, A. Kyne, N. Mera, M. Pourkashanian et al., Genetic algorithms for optimisation of chemical kinetics reaction mechanisms, Prog. Energy Combust. Sci, vol.30, issue.3, pp.297-328, 2004.

S. Harris, L. Elliott, D. Ingham, M. Pourkashanian, and C. Wilson, The optimisation of reaction rate parameters for chemical kinetic modelling of combustion using genetic algorithms, Comput. Methods Appl. Mech. Eng, vol.190, issue.8, pp.1065-1090

N. Jaouen, L. Vervisch, and P. Domingo, Auto-thermal reforming (ATR) of natural gas: an automated derivation of optimised reduced chemical schemes, Proc. Combust. Inst, vol.36, issue.3, pp.3321-3330, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657558

Z. Michalewicz and M. Schoenauer, Evolutionary algorithms for constrained parameter optimization problems, Evolutionary Comput, vol.4, pp.1-32, 1996.

C. Darwin, The origin of species by means of natural selection: or, the preservation of favored races in the struggle for life, p.1859

J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, 1975.

D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, 1989.

N. Darabiha and S. Candel, The influence of the temperature on extinction and ignition limits of strained hydrogen-air diffusion flames, Combust. Sci. Technol, vol.86, issue.1-6, pp.67-85, 1992.

T. Poinsot and D. Veynante, Theoretical and numerical combustion, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00270731

R. S. Barlow, M. J. Dunn, M. S. Sweeney, and S. Hochgreb, Effects of preferential transport in turbulent bluff-body-stabilized lean premixed CH 4 /air flames, Combust. Flame, vol.159, issue.8, pp.2563-2575, 2012.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, The structure of turbulent stratified and premixed methane/air flames I: non-swirling flows, Combust. Flame, vol.159, issue.9, pp.2896-2911, 2012.

A. Liñán and F. A. Williams, Fundamental aspects of combustion, 1993.

G. P. Smith, D. M. Golden, M. Frenklach, B. Eiteener, M. Goldenberg et al., , 2011.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, and M. G. Mayer, Molecular theory of gases and liquids, p.26, 1954.

P. Pepiot, Automatic strategies to model transportation fuel surrogates, 2008.

R. Kee and H. Dwyer, Review of stiffness and implicit finite difference methods in combustion modeling, 1980.

U. Pruefert, F. Hunger, and C. Hasse, The analysis of chemical time scales in a partial oxidation flame, Combust. Flame, vol.161, issue.2, pp.416-426, 2014.

S. Lam, Singular perturbation for stiff equations using numerical methods, Recent Advances in the Aerospace Sciences, pp.3-19, 1985.

U. Maas and S. B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame, vol.88, issue.3, pp.239-264, 1992.

T. Løvås, F. Mauss, C. Hasse, and N. Peters, Development of adaptive kinetics for application in combustion systems, Proc. Combust. Inst, vol.29, issue.1, pp.1403-1410, 2002.

J. Caudal, B. Fiorina, M. Massot, B. Labégorre, N. Darabiha et al., Characteristic chemical time scales identification in reactive flows, Proc. Combust. Inst, vol.34, issue.1, pp.1357-1364, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00728109

B. Franzelli, E. Riber, L. Y. Gicquel, and T. Poinsot, Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame, Combust. Flame, vol.159, issue.2, pp.621-637, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00811961

L. M. Somers and L. D. Goey, A numerical study of a premixed flame on a slit burner, Combust. Sci. Technol, vol.108, issue.1-3, pp.121-132, 1995.

B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier et al., Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combust. Theory Model, vol.7, issue.3, pp.449-470, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00256666

V. Moureau, P. Domingo, and L. Vervisch, Design of a massively parallel CFD code for complex geometries, C. R. Acad. Sci, vol.339, issue.2-3, pp.141-148, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01672172

M. Kraushaar, Application of the compressible and low-Mach number approaches to large eddy simulation of turbulent flows in aero-engines, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00711480

C. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati et al., Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame, Combust. Flame, vol.162, issue.9, pp.3356-3369, 2015.

H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin et al., USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds, 2007.

A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Lumping and reduction of detailed kinetic schemes: an effective coupling, Ind. Eng. Chem. Res, vol.53, issue.22, pp.9004-9016, 2013.

P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Phys. Chem. Chem. Phys, vol.4, issue.11, pp.2079-2094, 2002.

V. Bykov and U. Maas, The extension of the ILDM concept to reaction-diffusion manifolds, Combust. Theory Model, vol.11, issue.6, pp.839-862, 2007.

P. Nguyen, L. Vervisch, V. Subramanian, and P. Domingo, Multidimensional flamelet-generated manifolds for partially premixed combustion, Combust. Flame, vol.157, issue.1, pp.43-61, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01672184

M. Ihme, L. Shunn, and J. Zhang, Regularization of reaction progress variable for application to flamelet-based combustion models, J. Comput. Phys, vol.231, issue.23, pp.7715-7721, 2012.

S. Niu, Y. -. , L. Vervisch, and P. D. Tao, An optimization-based approach to detailed chemistry tabulation: automated progress variable definition, Combust. Flame, vol.160, issue.4, pp.776-785, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01671904

A. Scholtissek, P. Domingo, L. Vervisch, and C. Hasse, A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets, Proc. Combust. Inst, vol.37, issue.2, pp.1529-1536, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02007788

M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul, vol.8, issue.1, pp.3-30, 1998.

K. Deb and R. B. , Simulated binary crossover for continuous search space, Complex Syst, vol.9, issue.2, pp.115-148, 1995.

Z. Michalewicz, Genetic algorithms+ data structures = evolution programs, 2013.