I. Ryadchikov, S. Sechenev, M. Drobotenko, A. Svidlov, P. Volkodav et al., Stabilization system of a bipedal non-anthropomorphic robot anywalker, J. Eng. Sci. Technol. Rev, vol.11, pp.128-133, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01927623

D. J. Block, K. Åström, and M. W. Spong, The reaction wheel pendulum, Lectures Control Mechtron, vol.1, issue.1, pp.1-105, 2007.

M. W. Spong, P. Corke, and R. Lozano, Nonlinear control of the Reaction Wheel Pendulum, Automatica, vol.37, issue.11, pp.1845-1851, 2001.

M. Gajamohan, M. Merz, I. Thommen, and R. D'andrea, The Cubli: A cube that can jump up and balance, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst, pp.3722-3727, 2012.

M. Gajamohan, M. Muehlebach, T. Widmer, and R. D'andrea, The Cubli: A reaction wheel based 3D inverted pendulum, Proc. Eur. Control Conf. (ECC), pp.268-274, 2013.

M. Muehlebach, G. Mohanarajah, and R. D'andrea, Nonlinear analysis and control of a reaction wheel-based 3D inverted pendulum, Proc. 52nd IEEE Conf. Decision Control, pp.1283-1288, 2013.

S. Trimpe and R. , Accelerometer-based tilt estimation of a rigid body with only rotational degrees of freedom,'' in Proc, IEEE Int. Conf. Robot. Autom, pp.2630-2636, 2010.

G. Besan?on, Nonlinear Observers Application (Lecture Notes in Control and Information Sciences), vol.363, 2007.

A. Mystkowski, A. Kierdelewicz, U. Kotta, and V. Kaparin, Experimental validation of the newton observer for a nonlinear flux-controlled amb system operated with zero-bias flux, Int. J. Control, vol.2, pp.1-10, 2018.

S. Aranovskiy, R. Ortega, J. G. Romero, and D. Sokolov, A globally exponentially stable speed observer for a class of mechanical systems: Experimental and simulation comparison with high-gain and sliding mode designs, Int. J. Control, vol.92, issue.7, pp.1620-1633, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01658753

A. Levant, Robust exact differentiation via sliding mode technique, Automatica, vol.34, issue.3, pp.379-384, 1998.

R. Ushirobira, Algebraic differentiators through orthogonal polynomials series expansions, Int. J. Control, vol.91, issue.9, pp.2082-2089, 2018.

L. K. Vasiljevic and H. K. Khalil, Error bounds in differentiation of noisy signals by high-gain observers, Syst. Control Lett, vol.57, issue.10, pp.856-862, 2008.

W. Perruquetti, T. Floquet, and E. Moulay, Finite-time observers: Application to secure communication, IEEE Trans. Autom. Control, vol.53, issue.1, pp.356-360, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00176758

I. Ryadchikov, S. Aranovskiy, E. Nikulchev, J. Wang, and D. Sokolov, Differentiator-based velocity observer with sensor bias estimation: An inverted pendulum case study, IFAC-PapersOnLine, vol.52, issue.16, pp.436-441, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02383471

S. Diop, J. Grizzle, and F. Chaplais, On numerical differentiation algorithms for nonlinear estimation, Proc. 39th IEEE Conf. Decision Control, pp.1133-1138, 2002.

W. Perruquetti and T. Floquet, Homogeneous finite time observer for nonlinear systems with linearizable error dynamics, Proc. 46th IEEE Conf. Decision Control, pp.390-395, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00171342

H. K. Khalil, Nonlinear Systems, 2002.

J. Lofberg, YALMIP: A toolbox for modeling and optimization in MAT-LAB, Proc. IEEE Int. Conf. Robot. Automat, pp.284-289, 2004.

D. D. Stanislav-aranovskiy-;-ph and . Sc, Since 2017, he has been an Associate Professor with CentraleSupélec, campus Rennes, France. His research interests are nonlinear systems modeling and control, estimation and observers design, adaptive systems, Researcher with the Adaptive and Nonlinear Control Systems Lab, ITMO University, 2006.