
HAL Id: hal-02556927
https://centralesupelec.hal.science/hal-02556927

Submitted on 9 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Coherent Multi-User Detection Based on
Expectation Propagation

Ngo Khac-Hoang, Maxime Guillaud, Alexis Decurninge, Yang Sheng, Subrata
Sarkar, Philip Schniter

To cite this version:
Ngo Khac-Hoang, Maxime Guillaud, Alexis Decurninge, Yang Sheng, Subrata Sarkar, et al.. Non-
Coherent Multi-User Detection Based on Expectation Propagation. 2019 53rd Asilomar Confer-
ence on Signals, Systems, and Computers, Nov 2019, Pacific Grove, United States. pp.2092-2096,
�10.1109/IEEECONF44664.2019.9049073�. �hal-02556927�

https://centralesupelec.hal.science/hal-02556927
https://hal.archives-ouvertes.fr


Non-Coherent Multi-User Detection Based on
Expectation Propagation

Khac-Hoang Ngo∗†, Maxime Guillaud∗, Alexis Decurninge∗, Sheng Yang†, Subrata Sarkar‡, Philip Schniter‡
∗Mathematical and Algorithmic Sciences Lab., Huawei Technologies France, 92100 Boulogne-Billancourt, France

†Laboratory of Signals and Systems, CentraleSupélec, 91190 Gif-sur-Yvette, France
‡Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA

Email: {ngo.khac.hoang, maxime.guillaud, alexis.decurninge}@huawei.com,
sheng.yang@centralesupelec.fr, {sarkar.51,schniter.1}@osu.edu

Abstract—In this paper, we propose a novel soft-output multi-
user detector for non-coherent multiple access with Grassman-
nian signaling under Rayleigh block fading. Our detector is based
on expectation propagation (EP) approximate inference and has
polynomial complexity in the number of users. A simplified
version of this scheme coincides with a scheme based on soft
minimum-mean-square-error (MMSE) estimation and successive
interference cancellation (SIC). Both schemes, especially EP,
produce accurate approximates of the true posterior. They
outperform a baseline decoder based on projecting the received
signal onto the subspace orthogonal to the interference in terms
of both hard-detected symbol error rate and coded bit error rate.

Index Terms—non-coherent communications, multiple access,
expectation propagation, Grassmannian constellations

I. INTRODUCTION

In wireless communications, multiple-input multiple-output
(MIMO) technology is capable of improving significantly both
the system spectral efficiency and reliability [1], [2]. In practical
MIMO systems, the transmitted symbols are normally drawn
from a finite discrete constellation. The task of the receiver
is to detect these symbols based on the received signal and
available channel information. If the instantaneous value of
the channel matrix is treated as known, such as when it is
obtained via channel estimation, the detection problem is said
to be coherent and has been investigated extensively in the
literature [3]. If only statistical information about the channel
is available, the detection problem is said to be non-coherent.

In the non-coherent case, the transmitted symbols are
typically structured, e.g., using differential encoding, or such
that (s.t.) the matrix of symbols in the space-time domain is
orthonormal and isotropically distributed [4]. The latter was
proposed for the block fading channel where the channel matrix
remains constant for each coherence block of T symbols and
varies independently between blocks. There, information is
carried in the subspace of the signal matrix, which is invariant
to multiplication by the channel matrix. Thus, a non-coherent
constellation can be designed as a collection of points in the
Grassmann manifold G(CT ,K), which is the space of K-
dimensional subspaces in CT , where K is the number of
transmit antennas. This was shown to be capacity-achieving at
high signal-to-noise-ratio (SNR) for the Rayleigh block fading
channel [5]. The optimal maximum-likelihood (ML) detector
is NP-hard, thus low-complexity sub-optimal detectors have

been proposed for Grassmannian constellations with additional
structure, e.g., [6], [7].

In this paper, we focus on non-coherent detection in the
single-input multiple-output (SIMO) multiple-access channel
with K single-antenna users under flat and block Rayleigh
fading with coherence time T . The transmitted signals are con-
structed from disjoint Grassmannian constellations in G(CT , 1).
The receiver is interested not only in the hard detections of the
symbols but also in their posterior marginals to, e.g., compute
the bit-wise log-likelihood ratios (LLRs) required for channel
decoding. Exact posterior marginalization is prohibitive with
many users or large constellations. Thus we seek sub-optimal
schemes with practical complexity.

In contrast to probabilistic coherent MIMO detection, for
which many schemes have been proposed [3], the probabilistic
non-coherent MIMO detection has not been well investigated.
The detection scheme in [8] decouples the multi-user detection
into K single-user detection problems, but it is sub-optimal
and compatible only with the constellation structure therein.
The list-based soft demapper in [9] reduces the number of
terms considered in posterior marginalization by including
only those symbols at a certain distance from a reference point.
However, it was designed for the single-user case only and has
no obvious generalization to the multi-user case.

In this work, we propose message-passing algorithms for
posterior marginal inference in non-coherent multi-user MIMO
channels. Our algorithms are based on expectation propaga-
tion (EP) approximate inference [10]. For EP, we build a factor
graph whose variable nodes correspond to the noiseless received
signal vectors and the Grassmannian symbol indices. The EP
algorithm passes messages between these variable nodes and the
corresponding factor nodes. We also propose a simplification
of this scheme that can be interpreted as soft MMSE estimation
and successive interference cancellation (SIC).

We numerically compare the performance of our EP and
MMSE-SIC detectors to the optimal ML detector (when
possible), a genie-aided detector, the conventional coherent
detector, and the state-of-the-art detector from [8]. We find
that EP and MMSE-SIC achieve near-optimal symbol error
rate and coded bit error rate. To the best of our knowledge,
these are the first message-passing schemes for non-coherent
multi-user MIMO detection with Grassmannian signaling.

The remainder of this paper is organized as follows. We



present the system model in Section II. A brief review of
EP is presented in Section III, and the EP approach to the
non-coherent MIMO detection is presented in Section IV. In
Section V, a MMSE-SIC detector is presented as a simplifi-
cation of the EP detector. Numerical results are presented in
Section VI, and conclusions are presented in Section VII.

Notation: We denote vectors and matrices with italic bold
letters in respectively lowercase and uppercase, e.g., a vector vvv
and a matrixMMM . The Euclidean norm is denoted by ‖vvv‖ and the
Frobenius norm ‖MMM‖F . The trace, transpose, and conjugated
transpose of MMM are tr{MMM}, MMM T and MMMH, respectively. 1{·} is
the indicator function. 0 denotes the all-zero vectors/matrices.
[n] := {1, 2, . . . , n}. The Grassmann manifold G(CT ,K) is
defined as the space of K-dimensional subspaces in CT . In par-
ticular, G(CT , 1) is the Grassmannian of lines. D(q‖p) denotes
the Kullback-Leibler (KL) divergence between two distributions
p and q. N (µµµ,ΣΣΣ) denotes the Gaussian vector distribution with
mean µµµ, covariance matrix ΣΣΣ, and thus probability density
function (pdf) N (xxx;µµµ,ΣΣΣ) := exp(−(xxx−µµµ)HΣΣΣ−1(xxx−µµµ))

πndet(ΣΣΣ) , xxx ∈ Cn.

II. SYSTEM MODEL

We consider a SIMO multiple access channel in which K
single-antenna users transmit to a receiver having N antennas.
We assume that the channel between the receiver and each user
is flat and block fading with an equal-length and synchronous
(across the users) coherence interval of T symbols. That is, the
channel vectors hhhk ∈ CN×1 between the transmit antenna of
user k and the N receive antennas remain constant within each
coherence block of T > 1 symbols, and change independently
between blocks. The distribution of hhhk is assumed to be known
to the receiver, but its realizations are unknown to both the
receiver and users. We consider independent and identically
distributed (i.i.d.) Rayleigh fading, i.e., hhhk ∼ N (0, IIIN ).

Within a coherence block, each user k sends a signal vector
sssk ∈ CT , and the receiver receives a T ×N signal matrix

YYY =

K∑
k=1

ssskhhh
T

k +WWW = SSSHHHT +WWW, (1)

where SSS = [sss1 . . . sssK ] ∈ CT×K and HHH = [hhh1 . . .hhhK ] ∈
CN×K concatenate the transmitted signals and channel vectors,
respectively, WWW is the Gaussian noise with i.i.d. N (0, σ2)
entries, and the block index is omitted for simplicity. We
assume that the transmitted signals have average unit norm, i.e.,
E
[
‖sssk‖2

]
= 1, ∀k. Under this normalization, the SNR of each

transmitted signal at each receive antenna is SNR = 1/(Tσ2).
We assume that the transmitted signals belong to disjoint finite
individual Grassmannian constellations in G(CT , 1). That is,
sssk ∈ Sk := {sss(1)

k , . . . , sss
(|Sk|)
k }, where each symbol sss(i)

k is a
unit-norm vector representative of a point in G(CT , 1).

Given SSS, the matrix YYY is Gaussian with independent columns
having the same covariance matrix σ2IIIT +SSSSSSH. Thus,

p(YYY |SSS) =
exp

(
−tr

{
YYY H(σ2IIIT +SSSSSSH)−1YYY

})
πNTdetN (σ2IIIT +SSSSSSH)

. (2)

When a channel code is used, most channel decoders require
the LLR of the bits computed from the posteriors p(sssk|YYY ),
k ∈ [K], which are marginalized from

p(SSS|YYY ) =
p(YYY |SSS)p(SSS)

p(YYY )
∝ p(YYY |SSS)p(SSS). (3)

Assuming that the transmitted signals are independent and
uniformly distributed over the discrete constellations, the prior
p(SSS) factorizes as p(SSS = [sss1, . . . , sssK ]) =

∏K
k=1

1
|Sk|1{sssk ∈

Sk}. On the other hand, the likelihood function p(YYY |SSS)
involves all the signals sss1, . . . , sssK in a manner that does
not easily factorize. Exact marginalization of p(SSS|YYY ) requires
computing

p(sssk|YYY ) =
∑

sssl∈Sl,∀l 6=k

p(SSS|YYY ), for k ∈ [K]. (4)

This becomes formidable in the case of many users or large
constellations. Thus, we seek a low-complexity approximation

p(SSS|YYY ) ≈ p̂(SSS|YYY ) =

K∏
k=1

p̂(sssk|YYY ). (5)

In what follows, we design a posterior marginal estimation
scheme based on expectation propagation (EP).

III. EXPECTATION PROPAGATION

EP was proposed in [10] for approximate inference in
probabilistic graphical models. Let us consider a set of variables
contained in a random vector xxx with posterior of the form

p(xxx) ∝
∏
α

ψα(xxxα), (6)

where xxxα is the subset of variables involved in the factor ψα.
Let us partition the components of xxx into some sets {xxxβ},
where no xxxβ is split across factors (i.e., ∀ α, β either xxxβ ⊂ xxxα
or xxxβ ∩ xxxα = ∅). We are interested in the posterior marginals
with respect to (w.r.t.) the partition {xxxβ}.

EP approximates the true posterior p from (6) by a distribu-
tion p̂ that can be expressed in two ways. First, it can be w.r.t.
the “target” partition {xxxβ} as

p̂(xxx) =
∏
β

p̂β(xxxβ), (7)

where p̂β are constrained to be in the exponential family so that
p̂β(xxxβ) = exp

(
γγγT

βφφφβ(xxxβ)−Aβ(γγγβ)
)
, for sufficient statistics

φφφβ(xxxβ), parameters γγγβ , and log-partition function Aβ(γγγ) :=

ln
∫
eγγγ

Tφφφβ(xxxβ)dxxxβ . Second, p̂ can also be expressed w.r.t. the
partition {xxxα} in accordance with (6) as

p̂(xxx) ∝
∏
α

mα(xxxα). (8)

For (7) and (8) to be consistent, there must exist factors mα,β

of the form mα,β(xxxβ) = exp
(
γγγT

α,βφφφβ(xxxβ)
)

such that

mα(xxxα) =
∏
β∈Nα

mα,β(xxxβ) = exp

( ∑
β∈Nα

γγγT

α,βφφφβ(xxxβ)

)
, (9)

p̂β(xxxβ) ∝
∏
α∈Nβ

mα,β(xxxβ) = exp

( ∑
α∈Nβ

γγγT

α,βφφφβ(xxxβ)

)
, (10)



where Nα collects the indices β for which xxxβ ⊂ xxxα, and Nβ

collects the indices α for which xxxβ ⊂ xxxα. It turns out that
mα,β can be interpreted as a message from the factor node α
to the variable node β on a bipartite factor graph.

EP works by first initializing all mα(xxxα) and p̂β(xxxβ) then
iteratively updating each mα in turn. Let us fix a factor index
α. We construct the “tilted” distribution qα by swapping ψα
for its approximate mα in p̂(xxx) as qα(xxx) = p̂(xxx)ψα(xxxα)

mα(xxxα) , and
then project it back onto the exponential family by solving

p̂new
α (xxx) =

∏
β

p̂new
α,β (xxxβ) = arg min

p∈P
D
(
qα(xxx)

∥∥ p(xxx)
)
, (11)

where P is the set of distributions with the form of p̂ in (7).
After some manipulations following [10], we deduce that for
each β ∈ Nα, the optimal p̂new

α,β is the moment match of qα,β in
the exponential family with sufficient statistics φφφβ(xxxβ), where

qα,β(xxxβ) :=

∫
ψα(xxxα)

[ ∏
β∈Nα

∏
α′∈Nβ\α

mα′,β(xxxβ)

]
dxxxα\β (12)

is formed by taking the product of the true factor ψα and all
the messages impinging on that factor, and then integrating
out all variables except xxxβ . For β /∈ Nα, the optimal p̂new

α,β is
simply p̂β(xxxβ). The factor mα is then updated via

mnew
α (xxxα) =

p̂new
α (xxx)mα(xxxα)

p̂(xxx)
∝
∏
β∈Nα

mnew
α,β (xxxβ), (13)

with mnew
α,β (xxxβ) :=

p̂new
α,β (xxxβ)∏

α′∈Nβ\αmα′,β(xxxβ)
. (14)

Observe that the update of mα only affects the approximate
posterior of the variable nodes β in the neighborhood of factor
node α. Equation (14) says that the new message mnew

α,β passed
from α to β ∈ Nα equals p̂new

α,β divided by the message
product {mα′,β}α′∈Nβ\α, i.e., previous messages to β from
all directions except α. After that, the process is repeated with
the next α.

IV. APPLICATION OF EP TO NON-COHERENT DETECTION

To apply EP to the problem of non-coherent detection, we
express the signal of user k as sssk = sss

(ik)
k , where ik are random

symbol indices that are independent and uniformly distributed
over [|Sk|]. We rewrite (1) in vector form as

yyy =

K∑
k=1

zzzk +www, (15)

where yyy := vec(YYY T), zzzk := (sss
(ik)
k ⊗ IIIN )hhhk, and www :=

vec(WWW T) ∼ N (0, σ2IIINT ). The problem of estimating the
posteriors p(sssk|YYY ) is equivalent to estimating p(ik|YYY ) since
they admit the same probability mass function (pmf).

With zzz := [zzzT
1, . . . , zzz

T

K ]
T and iii := [i1, . . . , ik]T, we can write

p(iii, zzz|yyy) ∝ p(iii, zzz,yyy) = p(yyy|zzz)p(zzz|iii)p(iii)

= ψ0(zzz1, . . . , zzzK)

[ K∏
k=1

ψk1(zzzk, ik)

][ K∏
k=1

ψk2(ik)

]
, (16)

corresponding to (6), where

ψ0(zzz1, . . . , zzzK) := p(yyy|zzz) = N
(
yyy;

K∑
k=1

zzzk, σ
2IIINT

)
,

ψk1(zzzk, ik) := p(zzzk|ik) = N
(
zzzk;0, (sss

(ik)
k sss

(ik)H
k )⊗ IIIN

)
,

ψk2(ik) := p(ik) =
1

|Sk|
, for ik ∈ [|Sk|].

We will use EP to infer the posterior distribution of the indices
{ik}. To do so, we choose the partition xxx = {zzzk, ik}Kk=1 and
illustrate the interaction between these variables and the factors
ψ0, ψk1, and ψk2 by the bipartite factor graph in Fig. 1. This
graph has a tree structure with a root yyy and K leaves {ψk2}Kk=1.

ψ0yyy zzzk

µµµk0,CCCk0−−−−−→

zzz1

µµµ 10
,CCC

10

−−−
−−→

zzzK

µµµ
K

0 ,CCC
K

0

−−−−−−→

ψ11

µµµ11,CCC11←−−−−−

ψk1

µµµk1,CCCk1←−−−−−

ψK1

µµµK1,CCCK1←−−−−−−

i1

{π(i)
11 }
|Sk|
i=1−−−−−−→

ik

{π(i)
k1 }
|Sk|
i=1−−−−−−→

iK

{π(i)
K1}

|Sk|
i=1−−−−−−→

ψ12

{π(i)
12 }
|Sk|
i=1←−−−−−−

ψk2

{π(i)
k2 }
|Sk|
i=1←−−−−−−

ψK2

{π(i)
K2}

|Sk|
i=1←−−−−−−

...

...

...

...

...

...

...

...

Fig. 1. A factor graph representation of the non-coherent detection problem.

We write the EP approximation according to (7) as

p̂(xxx|yyy) = p̂(iii, zzz|yyy) =

K∏
k=1

p̂k(zzzk)p̂k(ik), (17)

where p̂k(zzzk) and p̂k(ik) are implicitly conditioned on yyy and
constrained to be a Gaussian vector distribution and a discrete
distributions with support [|S|], respectively, i.e.,

p̂k(zzzk) = N (zzzk; ẑzzk,ΣΣΣk) s.t. ΣΣΣk is positive definite, (18)

p̂k(ik) = π̂
(ik)
k for ik∈ [|Sk|] s.t.

|Sk|∑
i=1

π̂
(i)
k = 1. (19)

We also write the EP approximation according to (8) as

p̂(xxx|yyy) ∝ m0(zzz1, . . . , zzzK)

[ K∏
k=1

mk1(zzzk, ik)

][ K∏
k=1

mk2(ik)

]
,

where m0(zzz1, . . . , zzzK) ∝
∏K
k=1N (zzzk;µµµk0,CCCk0),

mk1(zzzk, ik) ∝ N (zzzk;µµµk1,CCCk1)π
(ik)
k1 , and mk2(ik) = π

(ik)
k2

for ik∈ [|Sk|]. On the factor graph in Fig. 1, we can interpret
(µµµk0,CCCk0) as the message from factor node ψ0 to variable
node zzzk, (µµµk1,CCCk1) as the message from node ψk1 to node
zzzk,

{
π

(ik)
k1

}|Sk|
ik=1

as the message from node ψk1 to node ik,

and
{
π

(ik)
k2

}|Sk|
ik=1

as the message from node ψk2 to node ik.
1) The EP message updates: Following (12) and (14), we

derive the messages as follows.1 First, the message
{
π

(ik)
k2

}|Sk|
ik=1

from node ψk2 to node ik is simply π(ik)
k2 = 1

|Sk| for ik ∈ [|Sk|].

1A full derivation can be found in the long version [11].



The message
{
π

(ik)
k1

}|Sk|
ik=1

from node ψk1 to node ik is given
by

π
(ik)
k1 =

N
(
0;µµµk0, (sss

(ik)
k sss

(ik)H
k )⊗ IIIN +CCCk0

)∑|Sk|
i=1 N

(
0;µµµk0, (sss

(i)
k sss

(i)H
k )⊗ IIIN +CCCk0

) , (20)

for ik ∈ [|Sk|]. The message (µµµk1,CCCk1) from node ψk1 to
nodes zzzk is given by

CCCk1 =
(
ΣΣΣ−1
k −CCC

−1
k0

)−1
, µµµk1 =CCCk1

(
ΣΣΣ−1
k ẑzzk−CCC−1

k0 µµµk0

)
, (21)

where

ẑzzk =

|Sk|∑
i=1

π
(i)
k1 ẑzzki, ΣΣΣk =

|Sk|∑
i=1

π
(i)
k1 (ẑzzkiẑzz

H

ki+ΣΣΣki)− ẑzzkẑzzH

k, (22)

with ΣΣΣki =
(

[(sss
(i)
k sss

(i)H
k )⊗ IIIN ]−1 +CCC−1

k0

)−1

, and ẑzzki =

ΣΣΣkiCCC
−1
k0 µµµk0. Finally, the message (µµµk0,CCCk0) from node ψ0 to

node zzzk is given by

CCCk0 = σ2IIINT +
∑
j 6=k

CCCj1, µµµk0 = yyy −
∑
j 6=k

µµµj1. (23)

2) Initialization of the EP messages: We choose the non-
informative initialization CCC−1

k0 = 0 and µµµk0 = 0, so that, from
(20), the initial message from node ψk1 to node ik coincides
with the uniform prior π(i)

k1 = 1
|Sk| for i ∈ [|Sk|]; the initial

parameters ΣΣΣki = (sss
(i)
k sss

(i)H
k ) ⊗ IIIN and zzzki = 0. This leads

to the initial parameters of p̂k(zzzk) from (22) as ẑzzk = 0, and
ΣΣΣk = 1

|Sk|
∑|Sk|
i=1 (sss

(i)
k sss

(i)H
k )⊗IIIN , and the initial message from

node ψk1 to node zzzk given in (21) as CCCk1 = ΣΣΣk, and µµµk1 = ẑzzk.
Finally, the initial messages from node ψ0 to node zzzk follows
from (23) as CCCk0 = σ2IIINT +

∑
j 6=k

1
|Sj |

∑|Sj |
i=1(sss

(i)
j sss

(i)H
j )⊗IIIN ,

and µµµk0 = yyy.
After the initialization, the EP algorithm proceeds by

iteratively updating the messages. In particular, it goes through
the branches of the tree graph in Fig. 1 in a round-robin
manner, and in each branch, the factor nodes are visited in the
order from leaf to root (other message passing schedulings can
be implemented). In the end, according to (10) and (19), the
estimated pmf of p̂(sssk|YYY ) is p̂k(ik) = π̂

(ik)
k ∝ π(ik)

k1 π
(ik)
k2 , that

is p̂k(ik) = π
(ik)
k1 since π(ik)

k2 is constant over ik ∈ [|Sk|].

V. MMSE-SIC: A SIMPLIFICATION OF EP
In the EP message updates, if we replace (21) by

µµµk1 = 0 and CCCk1 =

|Sk|∑
i=1

π
(i)
k1 (sss

(i)
k sss

(i)H
k )⊗ IIIN , (24)

which arises by skipping a projection onto the Gaussian family
in the derivation of (µµµk1,CCCk1), it follows from (23) that µµµk0 =

yyy and CCCk0 = σ2IIINT +
∑
j 6=k

∑|Sj |
i=1 π

(i)
j1 (sss

(i)
j sss

(i)H
j )⊗ IIIN . Let

RRRk :=
∑|Sk|
i=1 π

(i)
k1sss

(i)
k sss

(i)H
k and QQQk :=

∑
l 6=kRRRl + σ2IIIT , then

CCCk1 = RRRk ⊗ IIIN and CCCk0 = QQQk ⊗ IIIN . It follows that the
posterior update (20) of the EP scheme can be written as

π
(ik)
k1 =

N
(
0;yyy,

(
sss

(ik)
k sss

(ik)H
k +QQQk

)
⊗IIIN

)
∑|Sk|
i=1N

(
0;yyy,

(
sss

(i)
k sss

(i)H
k +QQQk

)
⊗IIIN

) , ik∈ [|Sk|]. (25)

This simplified scheme can be alternatively constructed
as follows. In the channel output (15), the interference
from other users while decoding the signal of user k is
tttk :=

∑
l 6=k zzzl with mean E [tttk] = 0 and covariance matrix

E [tttkttt
H

k] =
∑
l 6=k E [ssslsss

H

l ]⊗IIIN =
∑
l 6=kRRRl⊗IIIN . If we treat tttk

as a Gaussian vector with the same mean and covariance matrix,
then tttk+www ∼ N

(
0,QQQk⊗IIIN

)
. Since yyy = (sssk⊗IIIN )hhhk+tttk+www,

the single-user likelihood under this approximation is

p̂(yyy|sssk) = N
(
yyy;0,

(
sssksss

H

k +QQQk
)
⊗ IIIN

)
. (26)

Then, the update of the approximate posterior p̂(sssk|yyy)∝ p̂(yyy|sssk)
coincides with (25). RRRk is then recalculated with the updated
value of p̂(sssk|yyy), and QQQl, l 6= k, are updated accordingly. This
is done for each user k∈ [K], and then the next iteration starts.

In short, the derived simplification of the EP scheme
iteratively MMSE-estimates the signal zzzk of one user at a time
while treating the interference as Gaussian. At each iteration,
the Gaussian approximation of the interference for each user
is successively improved using the estimates of the signals of
other users. We refer to this scheme as MMSE-SIC. As for
the general EP scheme, we can start with the non-informative
initialization p̂(sssk|YYY ) = 1

|Sk|1{sssk ∈ Sk}.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed schemes
for a given set of individual constellations with |Sk| = 2B ,
∀k ∈ [K]. We consider the design in [8], which generates
Sk as sss(i)

k = UUUkddd
(i)

‖UUUkddd(i)‖
, i ∈ [2B ], where UUUk ∈ CT×(T−K+1)

is a full-rank precoder defined uniquely for user k and
D =

{
ddd(1), . . . , ddd(2B)} is a Grassmannian constellation in

G(CT−K+1, 1). We consider the precoders UUUk defined in [8,
Eq.(11)] and the cube-split constellation proposed in [7] for
D. This structured constellation has good packing properties,
allows for low-complexity single-user decoding and a simple
yet effective binary labeling scheme. We take the binary label
of ddd(i) for sss(i)

k , ∀k. Exploiting the precoder structure, [8]
introduces a detector [8, Sec.V-B-3] that mitigates interference
by projecting the received signal onto the subspace orthogonal
to the interference subspace. We refer to it as POCIS (Projection
onto the Orthogonal Complement of the Interference Subspace).

We set the number of iterations of EP and MMSE-SIC as
20, and of POCIS as 3 since it quickly converges.2

First, in Fig. 2, we plot the hard-detected symbol error
rate (SER) of EP, MMSE-SIC, and POCIS for T =6, K=3,
N = 8, and B= 8. For a benchmark, since the optimal joint
ML detector is computationally infeasible, we consider a genie-
aided detector consisting in giving the receiver, while it decodes
sssk, the knowledge of the signals sssl (but not the channels hhhl)
of all interfering users l 6=k. The performance of EP is very
close to this genie-aided detector and better than MMSE-SIC at
SNR≥10 dB. Both EP and MMSE-SIC are better than POCIS.
We also show the SER of a non-coherent time division multiple
access (TDMA) scheme where each user transmits from a

2To stabilize, we damp the update of CCCk1,µµµk1,CCCk0,µµµk0 in EP and of
RRRk,QQQk in MMSE-SIC.



cube-split constellation of size 2BK in G(CT , 1) in a round-
robin manner. We also show a coherent pilot-based scheme
with quadrature amplitude modulation signals, MMSE channel
estimation, and MMSE symbol equalization. These latter two
schemes are outperformed by the non-coherent multiple-access
scheme [8] with EP, MMSE-SIC, and POCIS detectors.
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Fig. 2. The symbol error rate of EP, MMSE-SIC, POCIS, and a genie-aided
detector for T = 6, K = 3, N = 8 in comparison with a pilot-based scheme
and non-coherent TDMA for the same transmission rate of 8 bits/user/block.

Next, we integrate a rate-1/3 turbo code. The turbo encoder
accepts packets of 1008 bits; the turbo decoder computes the
bit-wise LLRs from the detector’s soft outputs and performs 10
decoding iterations. In Fig. 3, we show the bit error rate (BER)
with this turbo code using B = 8 bits/symbol and different
values of T and K=N . EP achieves the closest performance
to the genie-aided detector and the optimal detector with exact
marginalization (4). The BER of MMSE-SIC vanishes slower
with SNR than the other schemes, and becomes better than
POCIS as K grows. For T = 7 and K =N = 4, the power
gain of EP w.r.t. MMSE-SIC and POCIS for the same BER of
10−3 is about 3 dB and 4 dB, respectively.

Fig. 3. The bit error rate with turbo codes of EP, MMSE-SIC, POCIS, and
the optimal/genie-aided detector for B = 8 bits/symbol and K = N .

Finally, in Fig. 4, we compare the BER with the same turbo
code with different constellation sizes for T = 6, K = 3, and
N = 4. For B = 5, i.e., small constellations, MMSE-SIC
can be slightly better than EP (both have performance close
to the optimal detector). This is because it can happen that
all the mass of the pmf π(ik)

k1 is concentrated on a possibly
wrong symbol at early iterations, and EP may not be able to

refine significantly the pmf if the constellation is sparse. This
situation is not observed for B = 8, i.e., larger constellations.
Also, as compared to the case T = 6,K = 3, B = 8 in Fig. 3,
the performance of MMSE-SIC is significantly improved as
the number of receive antennas N increases from 3 to 4.

Fig. 4. The bit error rate with turbo codes of EP, MMSE-SIC, POCIS, and
the optimal/genie-aided detector for T = 6, K = 3, and N = 4.

VII. CONCLUSION

We proposed an expectation propagation based scheme and
a MMSE-SIC scheme for soft-output multi-user detection in
non-coherent SIMO communications. The latter scheme can be
interpreted as a simplification of the former. Both schemes are
shown to achieve good performance, especially the EP scheme,
in terms of symbol error rate when they are used for hard
detection, and bit error rate when used for channel decoding.

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecommun., vol. 10, pp. 585–595, Nov./Dec. 1999.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in
a fading environment when using multiple antennas,” Wireless personal
communications, vol. 6, no. 3, pp. 311–335, 1998.

[3] S. Yang and L. Hanzo, “Fifty years of MIMO detection: The road to
large-scale MIMOs,” IEEE Communications Surveys Tutorials, vol. 17,
no. 4, pp. 1941–1988, Fourthquarter 2015.

[4] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for
multiple-antenna communications in Rayleigh flat fading,” IEEE Trans.
Inf. Theory, vol. 46, no. 2, pp. 543–564, Mar. 2000.

[5] L. Zheng and D. N. C. Tse, “Communication on the Grassmann manifold:
A geometric approach to the noncoherent multiple-antenna channel,”
IEEE Trans. Inf. Theory, vol. 48, no. 2, pp. 359–383, Feb. 2002.

[6] I. Kammoun, A. M. Cipriano, and J. C. Belfiore, “Non-coherent codes
over the Grassmannian,” IEEE Trans. Wireless Commun., vol. 6, no. 10,
pp. 3657–3667, Oct. 2007.

[7] K.-H. Ngo, A. Decurninge, M. Guillaud, and S. Yang, “Cube-split: A
structured Grassmannian constellation for non-coherent SIMO commu-
nications,” arXiv preprint arXiv:1905.08745, 2019, submitted to IEEE
Trans. Wireless Commun.

[8] K.-H. Ngo, A. Decurninge, M. Guillaud, and S. Yang, “A multiple access
scheme for non-coherent SIMO communications,” in 52nd Asilomar
Conference on Signals, Systems, and Computers, CA, USA, Oct. 2018,
pp. 1846–1850.

[9] M. A. El-Azizy, R. H. Gohary, and T. N. Davidson, “A BICM-IDD
scheme for non-coherent MIMO communication,” IEEE Trans. Wireless
Commun., vol. 8, no. 2, pp. 541–546, Feb. 2009.

[10] T. P. Minka, “A family of algorithms for approximate Bayesian inference,”
Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge,
MA, USA, Jan. 2001.

[11] K.-H. Ngo, M. Guillaud, A. Decurninge, S. Yang, and P. Schniter, “Multi-
user detection based on expectation propagation for the non-coherent
SIMO multiple access channel,” submitted to IEEE Trans. Wireless
Commun., 2019, (arXiv preprint arXiv:1905.11152).


