Principal component analysis with autocorrelated data
Abstract
This paper contributes to the analysis, interpretation and the use of the principal component analysis in a multivariate time-correlated linear process. The effect of ignoring the autocorrelation structure of the vector process is investigated. The results show a spurious impact of the time-correlation on the eigenvalues. To mitigate this impact, a pre-filtering procedure to whiten the data is applied. The methodology is used to identify redundant particulate matter measurements in a region in Brazil. Among the eight considered monitoring stations, it is found that three are needed to characterize the dynamic of the pollutant in the region.
Origin : Files produced by the author(s)