D. Love, R. Heath, and T. Strohmer, Grassmannian beamforming for multiple-input multiple-output wireless system, IEEE Trans. Inform. Theory, vol.49, issue.10, pp.2735-2747, 2003.

C. K. Au-yeung and D. Love, On the performance of random vector quantization limited feedback beamforming in a MISO system, IEEE Trans. on Signal Processing, vol.6, pp.458-462, 2007.

N. , MIMO Broadcast Channels With Finite-Rate Feedback, Trans. Inform. Theory, vol.52, issue.11, 2006.

O. Amin, E. Bedeer, M. H. Ahmed, and O. A. Dobre, A Novel Energy Efficient Scheme With a Finite-Rate Feedback Channel, IEEE Communications Letters, vol.3, issue.5, 2014.

H. Zou, C. Zhang, S. Lasaulce, L. Saludjian, and P. Panciatici, Decision-Oriented Communications: Application to Energy-Efficient Resource Allocation, proceedings of WINCOM 2018
URL : https://hal.archives-ouvertes.fr/hal-02289317

G. Caire, N. Jindal, and M. Kobayashi, Achievable rates of MIMO downlink beamforming with non-perfect CSI: a comparison between quantized and analog feedback, Fortieth Asilomar Conference on Signals, Systems and Computers, 2006.

T. L. Marzetta and B. M. Hochwald, Fast Transfer of Channel State Information in Wireless Systems, IEEE Transactions on Signal Processing, vol.54, 2004.

J. C. Roh and B. D. Rao, Transmit Beamforming in Multiple-Antenna Systems With Finite Rate Feedback: A VQ-Based Approach, IEEE Trans. Inf. Theory, vol.52, issue.3, 2006.

A. Hyadi, Z. Rezki, and M. Alouini, Secure Multiple-Antenna Block-Fading Wiretap Channels With Limited CSI Feedback, IEEE Trans. on Wireless Commun, vol.16, issue.20, 2017.

X. He, H. Xing, Y. Chen, and A. Nallanathan, Energy-Efficient Mobile-Edge Computation Offloading for Applications with Shared Data, 2018.

Y. Wang, M. Zhou, Z. Tian, and W. Tany, Beamforming and Artificial Noise Design for Energy Efficient Cloud RAN with CSI Uncertainty, 2018.

R. Radner, Team decision problems, The Annals of Mathematical Statistics, vol.33, issue.3, pp.857-881, 1962.

S. Liu, L. Xie, and D. E. Quevedo, Event-Triggered Quantized Communication-Based Distributed Convex Optimization, IEEE Trans. on Contr. of Network Systems, vol.5, issue.1, 2018.

A. Zappone, E. Björnson, L. Sanguinetti, and E. Jorswieck, Globally optimal energy-efficient power control and receiver design in wireless networks, IEEE Trans. on Signal Processing, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01781867

A. Zappone and E. Jorswieck, Energy efficiency in wireless networks via fractional programming theory, Foundations and Trends in Communications and Information Theory, vol.11, 2015.

A. Zappone, Z. Chong, and E. Jorswieck, Energy-Aware Competitive Power Control in Relay-Assisted Interference Wireless Networks, IEEE Transactions on Wireless Communication, vol.12, 2013.

E. V. Belmega and S. Lasaulce, Energy-Efficient Precoding for Multiple-Antenna Terminals, IEEE Transactions on Signal Processing, vol.59, issue.1, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00554965

D. B. Fogel, The Advantages of Evolutionary Computation, Proceeding of Biocomputing and emergent computation, pp.1-11, 1997.

F. Richter, A. J. Fehske, and G. Fettweis, Energy Efficiency Aspects of Base Station Deployment Strategies for Cellular Networks, IEEE Proceedings, 2009.

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, Deep Reinforcement Learning: A brief Survey, Deep Learning for Visual Understanding, 2017.

A. Mehrabian and C. Lucas, A novel numerical optimization algorithm inspired from weed colonization, Ecol. Inform, vol.1, issue.4, p.355366, 2006.

R. Storn and K. Price, Differential Evolution: A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, vol.11, pp.341-359, 1997.

X. Cai, Z. Hu, and Z. Fan, A novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimization, Soft Computing, vol.17, issue.10, pp.1893-1910, 2013.

S. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory, vol.28, issue.2, pp.129-137, 1982.