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Abstract: In the last decades, industrial problems have tried to take into account constraints explicitly in the design of the
control law. Model Predictive Control is one way to do so and has been extensively studied. However, most
papers related to constrained Model Predictive Control often omit to consider nondifferentiable constraints and
stability is not ensured when constraints are not satisfied. The aim of this paper is to propose a formulation of
the cost function of a Model Predictive Control to ensure stability in face with input and state nondifferentiable
constraints. For this purpose, a set where all constraints are satisfied is defined by means of the invariant set
theory. Once this set is defined, the system is enforced to reach it and stay in, while guaranteeing stability
thanks to the choice of a well suited Lyapunov function based on the cost function.

1 INTRODUCTION

In industrial problems, system design is usually based
on high-level system specifications. In order to reach
these specifications with high performances, require-
ments have to be taken into account during the design
of the control law. Model predictive control (MPC) is
one way to control systems with state and input con-
straints. In this paper, we aim to design a stabilizing
controller for a discrete linear system subject to non-
differentiable constraints.

As presented in (Rawlings et al., 2017), MPC
method elaborates the control input as the result of
an optimization problem. At each time step, a vec-
tor of future inputs is determined to get the optimal
predicted behavior of the system on a finite predic-
tion horizon according to a cost function. Following
the principle of the receding horizon, only the first in-
put of the obtained input sequence is applied to the
system. Stability, feasibility and constraint consider-
ations are important points that have been studied in
MPC theory. The following paragraphs present some
works related to these topics in order to capture the
underlying context of our study.

To begin with, MPC stability has been extensively
studied in recent decades. (Chen and Shaw, 1982) is
one of the first papers using a terminal constraint and
a Lyapunov function based on the cost function of the
MPC in order to prove stability. At this point no con-
straint was taken into account. (Keerthi and Gilbert,

1988) extended this work by using an equality termi-
nal constraint and a Lyapunov function to prove the
stability for a nonlinear discrete time varying system
subject to constraints. An equality constraint is in
general really challenging for an optimization algo-
rithm. Proof given in previous cited articles suppose
that the system is able to reach the final state before
the end of the prediction horizon in order to avoid
the problem of recursive feasibility. More recently,
in order to relax the terminal constraint while keeping
stability, (Rawlings and Muske, 1993) have used the
cost of the infinite horizon problem to define a termi-
nal cost. The proof of stability is based on the use of
a final controller related to the infinite horizon control
problem. (Chisci et al., 1996) and (Scokaert et al.,
1999) impose a terminal set where a state feedback
controller stabilizes the system. One drawback of this
method is the need to reach this set before the end of
the prediction horizon.

Next, one main issue of constrained MPC is the
feasibility of the problem because infeasibility can
lead to instability. In fact, in presence of constraints,
the system can be unable to reach the target point re-
gardless of the feasibility of the optimization prob-
lem (this defines MPC infeasibility). Recursive fea-
sibility is an important point, meaning that if the sys-
tem can reach the target point at a given time step,
the problem is also feasible at the next time step. To
obtain this, some improvements of the MPC problem
have been proposed. To avoid infeasibility to reach an



imposed terminal set, (Michalska and Mayne, 1993)
propose a solution with a prediction horizon of vari-
able length. In this case, the problem is that the pre-
diction horizon could become really large and the op-
timization algorithm could be unable to find a solu-
tion. In order to relax the problem, it is possible to use
slack variables, as presented in (Camacho and Bor-
dons, 2007). The main drawback of this method is
that it increases the number of optimization parame-
ters. Finally, (Zeilinger et al., 2010) propose to relax
the terminal set constraint that can grow to make the
problem feasible.

Barrier model predictive control (BMPC) has
emerged in order to take into account constrains di-
rectly in the cost function. Barrier functions method is
similar to the use of slack variables in that it permits to
relax constraints. The first proposition has been done
by (Wills and Heath, 2004) for differentiable con-
straints. Regardless of BMPC, economic MPC has
been developed to enforce reduction of some quan-
tities. According to (Amrit et al., 2011), economic
MPC minimizes a cost function that includes convex
constraints. (Müller et al., 2014) presents a formula-
tion that permits to take into account the mean value
of a state in the cost function.

Stability of BMPC has already been studied sev-
eral times. For instance in (Wills and Heath, 2004) the
stability has been proven by using a quadratic upper
bound of the barrier function and an ellipsoidal termi-
nal set. The same method has been used in (Feller and
Ebenbauer, 2015) with a polytopic terminal set. This
work is extended to suboptimal solution in (Feller
and Ebenbauer, 2017) where polytopic constraints on
states and inputs are included in the cost function us-
ing relaxed logarithmic barrier. Furthermore, (Pet-
sagkourakis et al., 2019) propose conditions to ensure
robust stability according to system uncertainties, yet
this paper only deals with differentiable constraints.
To the best of our knowledge, there is no literature
dealing with BMPC and nondifferentiable constraints.
Moreover, the case where the system is far from the
set where all constraints are satisfied is often omitted.

In this paper, we aim to propose a BMPC for lin-
ear discrete systems that can deal with any evaluable
constraint, being differentiable or not, by means of
barrier functions. For this purpose, a gradient free
optimization algorithm is needed to deal with any for-
mulation of barrier function. For instance, differen-
tial evolution algorithms (Price et al., 2006) are inter-
esting candidates to solve this problem. This choice
has been done in (Merabti and Belarbi, 2014) with a
multi-objective model predictive control using meta-
heuristic. Nevertheless this solution is only suitable
for a relatively small number of constraints, as the

difficulty of choosing the best solution in the Pareto
front increases with the number of objectives.

In addition to the proposed methodology, a proof
of stability using Lyapunov and invariant set theory
is also established in the case of linear discrete sys-
tems under some realistic assumptions. The proposed
method is based on the following steps:

1. Constraints formulation. Constraints directly re-
sult from the initial set of specifications and no
reformulation should be required at this stage.

2. Constraints classification. Constraints are clas-
sified into two different categories and some of
them are used in the cost function as barrier func-
tions. This classification is important for stability
purpose as it will be shown in the sequel.

3. Unconstrained set definition. Specifications per-
mit to define a set where all constraints are sat-
isfied and the corresponding backward reachable
set. These sets are defined in such a way that the
stability can be proven.

4. Cost function definition. The cost function is de-
fined by using barrier functions defined in step (2)
and according to sets defined in step (3).

This paper is organized as follows. First of all, we
will introduce some notations in section 2. Section 3
introduces conditions about the barrier functions to
be chosen. Then, section 4 is related to the determi-
nation of the maximal unconstrained set. The cost
function of the proposed BMPC is developed in sec-
tion 5. Thereafter, section 6 provides a proof of sta-
bility based on the Lyapunov theory. An application
of the proposed BMPC is given in section 7. Finally,
section 8 concludes and proposes some future works.

2 NOTATIONS

Linear discrete-time systems of interests in this paper
are defined by (1).

"

xK`1 “ AxK`BuK
yK “ CxK`DuK

. (1)

where K PN is the time index, xK PXĎRn (n PN˚),
uK P UĎ Rp (p P N˚), y P Rm (m P N˚), A P Rnˆn,
B P Rnˆp, C P Rmˆn and D P Rmˆp. X and U are
two compact sets. Without any loss of generality, the
system will be stabilized at the origin. Assumption 1
and 2 are considered for the system.
Assumption 1. pA,Bq is controllable.

Assumption 2. A is non singular. Among others, this
is the case for systems obtained by discretization of
continuous systems without time delay.



Our prediction model is defined by (2) where pre-
dicted states and outputs will be respectively denoted
by x̄ and ȳ.

@k P J0;N´1K,
"

x̄k`1 “ Ax̄k`Buk
ȳk “ Cx̄k`Duk

. (2)

x̄0 P Rn is the initial state of the system and x̄N P Rn

the final predicted state where N PN˚ is the prediction
horizon. It is assumed that the state at time K, xK , can
be measured thus x̄0 “ xK . The vector of predicted
states is x̄“ rx̄0, . . . , x̄Ns.

JN denotes the cost function. Mathematical for-
matting of the cost function will be more precisely
presented in section 5. We also define the optimal
cost J˚N and the problem PNpxKq which is solved by
the MPC optimizer at each time step as (3).

PNpxKq : J˚N pxKq “min
u

 

JNpx̄,uq | u P UN( . (3)

u P UN denotes the vector of control inputs. Accord-
ing to the receding horizon principle, the first compo-
nent of the vector u is applied to the system and (3) is
solved again at the following time step.
}x}Q denotes the norm of x P Rn defined by

}x}Q “ xTQx where Q P Rnˆn is a symmetric strictly
definite positive matrix.
@x P Rn, dpx,Sq “ inftN px,sq|s P Su represents

the distance between x and the set S where N is a
norm on Rn. For instance, N could be the Euclidean
norm.

The Minkowski addition will be denoted by‘ and
is defined by (4).

@pA,Bq PRnˆRn, A‘B“ta`b,a P A and b P Bu .
(4)

Equation 5 defines the product between a matrix M
and a set A.

@pM,Aq , MA“ tMa,a P Au (5)

where M and A have compatible sizes.
The following operator can be applied to sets:

@pA,Bq Ď RnˆRn, AzB“ tx | x P A and x R Bu .
(6)

3 Formulation of the barrier
functions

System design is often based on end-user specifica-
tions. Only specifications that can be mathematically
formatted as constraints are considered in this paper.
The main goal of this section is to present a way to
consider constraints as barrier functions that will be
used in the proposed BMPC. Properties required for

sake of stability proof (section 6) are also provided.
Once constraints are satisfied, the goal is to make the
system remain as long as possible inside the corre-
sponding set; in the case where the initial system state
does not satisfy the constraints, the goal is to reach the
feasible set.

We only consider inequality constraints defined by

c
`

X̂ ,Û
˘

ď cmax (7)

where X̂ is any set of states evaluated at any sample
time and Û is any set of inputs evaluated at any sample
time and cmax P R.

We admit that all constraints are at least satisfied
at the origin pcp0,0q ď cmaxqwhich is the target point.

Equality constraints are unusual in industrial prob-
lems and can be easily converted into inequality con-
straint using (8), where ε P R` is a small number.

c
`

X̂ ,Û
˘

“ 0 Ñ
›

›c
`

X̂ ,Û
˘
›

›´ εď 0 (8)

Constraints can be classified into two categories:

1. Constraints that are applied independently to each
predicted state. For instance, an upper bound on a
given state variable.

2. Constraints that are applied to a combination of
different predicted states. For instance, the vari-
ance of a state over the predicted horizon.

The total number of constraints and the number
of constraints which belong to the first type will be
respectively denoted by N˚c and Nc.

In the following, the constraint u PU is not consid-
ered using a barrier function because the search space
of a gradient free optimization algorithm is usually a
compact set.

The largest set included in X where all constraints
are satisfied will be denoted by C̃ Ď X.

For stability purpose (see section 6), only con-
straints that belong to the first type will be taken into
account in the cost function of the MPC as barrier
functions. However, all constraints will be taken into
account during the determination of C̃ .

It is worth emphasizing that barrier functions are
only here to penalize the cost function when con-
straints are not satisfied, thus it cannot be ensured
that constraints will always be satisfied. Moreover,
because barrier functions can only be evaluated on
the prediction horizon we cannot guarantee that con-
straints will be satisfied from a global point of view.
Yet, increasing the value of N can increase probability
to globally fulfill requirements.

The use of barrier functions permits to relax the
problem and improve feasibility. This relaxation per-
mits to always find a trajectory to reach the target
point even if all constraints are not satisfied.



We will now give some properties required to
prove stability of our proposed BMPC. The barrier
function lc for constraint c should be defined to sat-
isfy:

@pu,kq PUNˆJ0;NK,
"

lcpx̄k,uq “ 0 if x̄k P X̃c
lcpx̄k,uq ě 0 if x̄k R X̃c

(9)
where X̃c is the set where the constraint c is satisfied.

lb is defined as the global barrier function:

@pu,kq P UN ˆ J0;NK, lbpx̄k,uq “
Nc
ÿ

c“1

lcpx̄k,uq.

(10)
Using (9) the following property holds:

@pu,kq PUNˆJ0;NK,
"

lbpx̄k,uq “ 0 if x̄k P C̃
lbpx̄k,uq ě 0 if x̄k R C̃

(11)
where C̃ is defined by (12).

C̃ “

N˚c
č

c“1

X̃c. (12)

Since lb is a barrier function that may be applied to
all elements of the predicted state vector x̄, the no-
tation lb px̄,uq will be used in the sequel. Properties
presented in (11) still hold true for each element x̄k of
the predicted state x̄.

4 Determination of the
unconstrained set

In this section a method to determine a set C as an
approximation of C̃ is presented. This set C has to
be included or equal to C̃ and to be positive invariant.
Positive invariant sets correspond to definition 1 be-
low, which will be used in section 6 to prove stability.

Definition 1. A set C is positive invariant with re-
spect to the system xK`1 “ AxK`BuK for the control
law uK “ K̄xK if for a state xK P C then for all i P N˚,
xK`i P C .

The set which corresponds to the set of all points
that can reach C in N steps is denoted by CrpNq. The
following property 1 holds true and the corresponding
proof is given by proof 1.

Property 1. If C is control invariant with respect to
U then CrpNq is control invariant with respect to U.

Proof 1. Let xK be an element of CrpNq. It means that
it exists an input sequence u “ ru0, . . . ,uN´1s which
leads to a final predicted state x̄N P C . It has been
supposed that the predictor is identical to the system

thus, at the next time step, the current state will be
xK`1 “ x̄1 “ Ax̄0 ` Bu0. Because C is control in-
variant with respect to U, it exists u` P U such that
x̄`N “ Ax̄N ` Bu` P C . Therefore, the control vec-
tor u` “

“

u1, . . . ,uN´1,u`
‰

leads to x̄`N P C . Thus
CrpNq is control invariant with respect to U. ˝

4.1 First approximation of C̃ : C̄

To begin with, by taking into account all specifica-
tions, a first approximation C̄ of C̃ should be de-
termined. This first approximation is not necessarily
positive invariant. In some cases and particularly in
the case of nonlinear constraints, the set X̃c where a
constraint c is satisfied is difficult to compute. That
is why a set X̄c Ď X̃c is used as an approximation.
Finally, a first approximation C̄ of C̃ is:

C̄ “

N˚c
č

c“1

X̄c. (13)

For all constraint c, assumption 3 is done on X̄c.
Assumption 3. Every set X̄c contains the origin. As a
consequence, 0 P C̄ which means that C̄ is not empty.

As an example, in a stochastic context, consider-
ing a constraint on the variance σ2 over the prediction
horizon of the first element x̄1 of the predicted state x̄:

σ
2 `“x̄1

0, . . . , x̄
1
N
‰˘

ď a. (14)

where a P R`, a set X̄c for this constraint can be de-
fined by:

X̄c “
 

xk , @k P J0;NK , x̄1
k P R , |x̄1

k | ď
?

a
(

. (15)

4.2 Definition of the set C

In this part, it is supposed that the first approximation
C̄ Ď C̃ is known. In the following, we will deal with
a convex polytope approximation of C̄ . Convex poly-
tope approximations of sets are discussed in (Bron-
stein, 2008).

The maximal positive invariant set C included in
C̄ is determined using algorithm described in (Gilbert
and Tan, 1991) for the system defined by (16). KLQ is
computed by solving a Linear Quadratic problem.

"

xK`1 “ AxK`BpKLQxKq

yK “ CxK`DpKLQxKq
. (16)

This method will be illustrated by the example in
section 7.

In the following, it is assumed that C is known
and defined, therefore property 1 holds for CrpNq.
Remark 1. Equation (11) still holds by substituting
C̃ for C because C Ď C̃ .



5 Definition of the cost function

5.1 Theoretical concept

We would like to ensure that x̄N will reach C when the
current state xK “ x̄0 is in XzC . The set of trajectories
corresponding to N steps forward from x̄0 such that
dpx̄N ,C q ă dpx̄0,C q is denoted by T. Tc ĂT denotes
the set of trajectories such that x̄N P C which means
that dpx̄N ,C q “ 0.

Assumption 4 is considered.

Assumption 4. x̄0 is in the maximal controllable set
included in X. As a consequence, T is not empty.

Furthermore, by definition of CrpNq, Tc is not
empty if and only if the current state xK “ x̄0 is in
CrpNq.

The two following cases are considered:

1. If Tc is empty, then a LQ control law is applied.
With this control law, the state is ensured to reach
CrpNq

2. If Tc is not empty, then the best trajectory in Tc
is found according to the cost function and con-
straints that belong to the first category presented
in section 3.

Figure 1 shows the different cases for a two states
system.

Following statements propose a mathematical for-
mulation of the cost function that can be used as the
criterion to be optimized in both cases.

5.2 Mathematical formulation

When x̄0 R CrpNq, convergence has to be prioritized
against constraints thus two objectives have to be
considered corresponding to cases: x̄0 R C and x̄0 P

CrpNq.

5.2.1 Mathematical requirements for
convergence for xK “ x̄0 R C

In this case, we have to find if it exists a trajectory
that can reach C which means that dpx̄N ,C q “ 0 thus
the global cost function is required to be the distance
dpx̄N ,C q:

J1px̄,uq “ dpx̄N ,C q. (17)

With this cost function the optimization algorithm
is enforced to find a trajectory with the final predicted
state in (or at least as close as possible to) the set C
where all constraints are satisfied. This is equivalent
to a terminal constraint.

Case 1

x1

x2

X
CrpNq

C

LQ trajectory
x̄0

Case 2

x1

x2

X
CrpNq

C

x̄0

Possible trajectory
Selected trajectory

Figure 1: Graphic presentation of the two different cases

5.2.2 Mathematical requirements for finding the
best trajectory with regard to constraints
for xK “ x̄0 P CrpNq

For the second case, it is required to find the best
trajectory in Tc according to the classical MPC cost
function and the barrier functions. Thus, the cost
function to be minimized is defined by (18).

J2px̄,uq “
N´1
ÿ

k“0

lpx̄k,ukq` lNpx̄Nq` lbpx̄,uq. (18)

where lpx̄k,ukq “ }x̄k}Q`}uk}R is the classical MPC
cost, lNpx̄Nq is a terminal cost and lb corresponds to
barrier functions (defined in section 3).



5.2.3 Mathematical formatting of the cost
function

We want to consider one single optimization problem
thus a cost function that takes into account both cases
presented in section 5.1 is defined. For this purpose,
a positive and a negative cost function will be respec-
tively used for the first and the second case by using
the involutory1 transformation t defined by (19).

@x P R˚`, tpxq “ ´1{x. (19)

The optimization process is finally based on the
global cost function Jg defined by (20).

Jgpx̄,uq“

$

&

%

J1px̄,uq if x̄0 R CrpNq
t pJ2px̄,uqq if x̄0 P CrpNq and J2px̄,uq ‰ 0
´8 if x̄0 P CrpNq and J2px̄,uq “ 0

(20)
In the next section, it will be shown that this cost func-
tion permits to impose stability.

Remark 2. This methods bears similarities with the
one proposed in (Feyel, 2017) where H8 controllers
are tuned using stochastic algorithms. The first step of
the method consists of reducing the distance between
the largest magnitude of eigenvalues of the closed
loop and the unit circle and the second optimization
step consists of finding the best controller according
to specifications.

6 Asymptotic stability

To begin with, we tried to apply recommendations
proposed in (Mayne et al., 2000) in order to prove
stability of a BMPC using the cost function defined
by (18), however we have faced the need to assume
that the barrier function defined by (10) is decreas-
ing along the prediction horizon. This assumption is
unsatisfying when we deal with some specific con-
straints such as standard deviation of the output which
can only grow if the system starts from a stationary
state. That is why the cost function (20) has been pro-
posed.

In this section assumption 5 is considered.

Assumption 5. The optimization algorithm always
finds the global minimum of PN defined by (3).

In practice it is almost impossible to find the ex-
act global solution at each step thus some works have
been done in order to prove stability without assump-
tion 5, (Reble and Allgöwer, 2012), (Allan et al.,
2017), (Scokaert et al., 1999). Using these works, the

1An involutory transformation defines a transformation
that is its own inverse.

following proof can be modified to tackle suboptimal
solutions given by the optimizer. This point will be
tackled in future works.

In order to prove stability, we need to ensure that
the following properties hold when solving PNpx̄0q:

1. If x̄0 is not in CrpNq, the convergence of the sys-
tem state is ensured by applying a LQ control law.

2. If x̄0 is in CrpNq we have Lyapunov stability.

With these two statements it is possible to prove
that the system will reach the unconstrained set C and
that the system is stable in the sense of Lyapunov in
CrpNq.

Remark 3. The decrease of the distance in the first
statement does not imply that the value of the cost
function decreases and the barrier function can be
non convex. That is why, as said at the beginning of
the section, we cannot follow the recommendation of
(Mayne et al., 2000) to ensure stability.

6.1 Convergence for xK “ x̄0 R CrpNq

The cost function has been formulated in order to
firstly determine a trajectory such that dpx̄N ,C q “ 0,
but in case where xK “ x̄0 R CrpNq such trajectory
does not exist. In practice, it corresponds to a posi-
tive cost at the end of the optimization. In this case,
a LQ control law is applied to the system. With this
law, the system state is ensure to converge to CrpNq.

Remark 4. The idea that consists of applying the se-
quence of input determined by the MPC algorithm
that decreases the distance from C is not sufficient
to ensure convergence thus it is not a viable solution.

6.2 Convergence for xK “ x̄0 P CrpNq

We now tackle the second point. To begin with, the
following function V is defined.

@px̄,uq P CrpNqN`1ˆUN ,
V px̄,uq “ t pJgpx̄,uqq “ ´1

Jgpx̄,uq
. (21)

By simplifications using the fact that x̄0 P CrpNq
and (20):

@px̄,uq P CrpNqN`1ˆUN ,

V px̄,uq “ J2px̄,uq

“
N´1
ř

k“0
lpx̄k,ukq` lNpx̄Nq` lbpx̄,uq.

(22)
Because l and lN are positive functions on

XˆU and lb is a positive function on XN`1 ˆUN ,
we can conclude that V is a positive function on
CrpNqN`1ˆUN . Moreover, V p0,0q “ 0.



We can choose similarly to the warm start method
presented in (Rawlings et al., 2017) (see Fig. 2):

@k P J0;N´2K, u`k “ uk`1, (23)

u`N´1 is chosen such that x̄`N P C . The existence of
u`N´1 such that x̄`N P C is directly derived from defi-
nition 1 and property 1. The optimization algorithm
could find an other vector u`, but this solution can
only be better in terms of cost function (thanks to as-
sumption 5) thus the proof proposed below still holds.

x1

x2

X
CrpNq

C x̄0

x̄1 “ x̄0
`

x̄2 “ x̄1
`

x̄3 “ x̄2
`

x̄4 “ x̄3
`x̄5 “ x̄4

`
x̄6 “ x̄5

`
x̄6
`

Trajectory from x̄0

Trajectory from x̄`0
Figure 2: Example for N “ 6

The next predicted state vector corresponding
to u` will be denoted by x̄`. By definition,
x̄` “

“

x̄1, . . . , x̄N , x̄`N
‰

. The function V evaluated at
the next time step is thus V px̄`,u`q.

We now evaluate V px̄`,u`q´V px̄,uq,

V px̄`,u`q´V px̄,uq

“
N´1
ř

k“0
lpx̄`k ,u`k q` lNpx̄`N q` lbpx̄`,u`q

´

„

N´1
ř

k“0
lpx̄k,ukq` lNpx̄Nq` lbpx̄,uq



“
N´1
ř

k“0

“

lpx̄`k ,u`k q´ lpx̄k,ukq
‰

` lbpx̄`,u`q´ lbpx̄,uq
` lNpx̄`N q´ lNpx̄Nq

(24)

As a reminder, only barrier functions that corre-
spond to constraints that belong to the first category
presented in 3 are taken into account. Moreover,
x̄` “

“

x̄1, . . . , x̄N , x̄`N
‰

by definition. Thus, the expres-
sion lbpx̄`,u`q´ lbpx̄,uq that appears in (24) can be
simplified by looking only on influence of the first
component: x̄0 and the last one: x̄`N . In order to make

it appears explicitly, we will note:

lbpx̄`,u`q´ lbpx̄,uq “ lbpx̄`N ,u`q´ lbpx̄0,uq. (25)

Moreover, by using (23), we can simplify (24):

V px̄`,u`q´V px̄,uq “ lpx̄`N´1,u
`
N´1q´ lpx̄0,u0q

` lbpx̄`N ,u`q´ lbpx̄0,uq
` lNpx̄`N q´ lNpx̄Nq

(26)
By definition of C , x̄`N P C ñ lbpx̄`N ,u`q “ 0
(see (11)). We finally have

V px̄`,u`q´V px̄,uq “ lpx̄`N´1,u
`
N´1q´ lpx̄0,u0q

´ lbpx̄0,uq
` lNpx̄`N q´ lNpx̄Nq

(27)
From (11), lb is a positive function thus:

V px̄`,u`q´V px̄,uq
ď lNpx̄`N q´ lNpx̄Nq` lpx̄`N´1,u

`
N´1q´ lpx̄0,u0q

(28)
The right part of inequality (28) corresponds to the
classical equation that is found in the proof of stability
of the original Model Predictive Control. According
to (Rawlings et al., 2017), if we choose for instance
lNpx̄Nq “ x̄T

NPx̄N where P is the positive definite solu-
tion of the Ricatti equation:

P“ Q`ATPA´ATPBpBTPB`Rq´1BTPA, (29)

we can prove that

lNpx̄`N q´ lNpx̄Nq` lpx̄`N´1,u
`
N´1q´ lpx̄0,u0q ă 0

(30)
From (28), we finally have V px̄`,u`q´V px̄,uq ă 0.

To conclude, V is a positive decreasing function
with V p0,0q “ 0 thus V is a Lyapunov function and
we can conclude that the proposed BMPC is Lya-
punov stable on CrpNq.

7 Application example

In this example, a motor with angular position and ve-
locity respectively denoted by θ and Ω is considered.
The considered motor can be modeled by a first order
transfer function: θpsq{upsq “ 0.9{ps˚ p1`0.015sqq
The sampled time is chosen to be Te “ 1ms and the
whole state is measured. The corresponding state
space representation is:
$

’

’

&

’

’

%

xK`1 “

ˆ

1.0 1.0e´3
0 9.4e´1

˙

xK`

ˆ

1.0e´4
5.8e´2

˙

uK

yK “

ˆ

1 0
0 1

˙

xK

(31)



where xK “
`

θK ΩK
˘T.

It is assumed that the set of constraint C̃ is defined
for all K in N by

ˆ

0 1
0 ´1

˙

xK ď

ˆ

8
8

˙

. (32)

Furthermore, @K P N, ´10ď uK ď 10.
In this particular case, all constraints are taken into

account in the cost function because they all belong to
the first category presented in section 3. In this exam-
ple, exponential barrier functions defined by (33) have
been used.

lbpx̄,uq “ αmax
ˆ

0,exp
ˆ

β max
kPJ1,NK

tdpΩk,XΩqu

˙

´1
˙

(33)

where α and β are two tuning parameters respec-
tively fixed to 5 and 1000. XΩ is the set where con-
straints over Ω are satisfied.

Algorithm developed by (Gilbert and Tan, 1991)
is now applied to find a set C Ď C̃ that is positive in-
variant. As a result, the algorithm has converged in
14 steps to C , this result is presented in Fig. 3. More-
over, algorithms developed by (Herceg et al., 2013)
have been used to compute all sets.

Figure 4 shows some trajectories from different
initial points of the proposed algorithm. The BMPC
problem is solved using Perturbed Differential Evo-
lution algorithm proposed in (Feyel, 2015) which is
known to give results with small standard deviation
from a run to the next. In order to emphasize the in-
terest of the cost function defined by (20), Fig. 4 also
shows results obtained without using the barrier func-
tion. Finally, as it can be seen in Fig. 5, constraints are
satisfied faster with the proposed method than without
using barrier functions.
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Figure 3: C computed by algorithm developed by (Gilbert
and Tan, 1991)
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Figure 4: Trajectories using the same initial point using the
proposed algorithm (in blue) and not using it (in red)
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Figure 5: Temporal comparison of trajectories using the
proposed method or not

8 Conclusion

We have proposed a MPC which can handle any kind
of nonlinear constraints by including barrier functions
in a particular cost function. Using this method re-
quires to define a set C where all constraints are sat-
isfied. Some important properties of the set have been
presented and a method to define it has also been pro-
vided. Furthermore, we have proposed a proof of sta-
bility for our Barrier Model Predictive Control. The
interest of the method has been shown on a numerical
example.

In return of the use of a gradient free optimiza-
tion algorithm, real time implementation will need
an efficient code optimization for parallelization, or
the use of a compact algorithm if the memory is lim-
ited. Moreover the characterization of C is sometimes
difficult and can lead to conservative results. Future
works will deal with a more efficient determination of
this set.

This paper is restricted to the case of linear
systems because application of algorithm developed
by (Gilbert and Tan, 1991) and by extension definition



of C is not direct for nonlinear systems. That is why
future works will also deal with extension to nonlin-
ear systems. We will also extend stability to the case
of suboptimal solution given by the optimizer and im-
prove robustness with respect to system uncertainties.
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Rawlings, J. B. (2014). Convergence in economic
model predictive control with average constraints. Au-
tomatica, 50(12):3100–3111.

Petsagkourakis, P., Heath, W. P., Carrasco, J., and Theodor-
opoulos, C. (2019). Input-output stability of barrier-
based model predictive control.

Price, K., Storn, R. M., and Lampinen, J. A. (2006). Differ-
ential evolution: a practical approach to global opti-
mization. Springer Science & Business Media.

Rawlings, J. B., Mayne, D. Q., and Diehl, M. (2017). Model
Predictive Control: Theory, Computation, and De-
sign. Nob Hill Publishing.

Rawlings, J. B. and Muske, K. R. (1993). The stability of
constrained receding horizon control. IEEE transac-
tions on automatic control, 38(10):1512–1516.
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