S. Ahn, S. E. Zauber, R. M. Worth, and L. L. Rubchinsky, Synchronized beta-band oscillations in a model of the globus pallidus-subthalamic nucleus network under external input, Front. Comput. Neurosci, vol.10, p.134, 2016.

M. Arlotti, S. Marceglia, G. Foffani, J. Volkmann, A. M. Lozano et al., Eight-hours adaptive deep brain stimulation in patients with Parkinson disease, Neurology, vol.90, pp.971-976, 2018.

S. Basir-kazeruni, . Mi, A. Beuter, J. Lefaucheur, and J. Modolo, Closed-loop cortical neuromodulation in Parkinson's disease: an alternative to deep brain stimulation?, Clin. Neurophysiol, vol.125, pp.874-885, 2014.

C. R. Butson, C. B. Maks, and C. C. Mcintyre, Sources and effects of electrode impedance during deep brain stimulation, Clin. Neurophysiol, vol.117, pp.447-454, 2006.

R. Carron, A. Chaillet, A. Filipchuk, W. Pasillas-lepine, and C. Hammond, Closing the loop of deep brain stimulation, Front. Syst. Neurosci, vol.7, p.112, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01264998

A. Chaillet, G. I. Detorakis, S. Palfi, and S. Senova, Robust stabilization of delayed neural fields with partial measurement and actuation, Automatica, vol.83, pp.262-274, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522308

A. Chaillet, J. Or?owski, P. , and P. , A relaxed Lyapunov-Krasovskii condition for global exponential stability of Lipschitz time-delay systems, 58th IEEE Conference on Decision and Control (CDC) (Nice), 2019.

A. Chaillet, A. Pogromsky, and B. Rüffer, A Razumikhin approach for the incremental stability of delayed nonlinear systems, 52nd IEEE Conference on Decision and Control (CDC) (Florence), 2013.
URL : https://hal.archives-ouvertes.fr/hal-00855656

V. L. Corbit, T. C. Whalen, K. T. Zitelli, S. Y. Crilly, J. E. Rubin et al., Pallidostriatal projections promote ? oscillations in a dopamine-depleted biophysical network model, J. Neurosci, vol.36, pp.5556-5571, 2016.

C. M. Davidson, A. M. De-paor, H. Cagnan, and M. M. Lowery, Analysis of oscillatory neural activity in series network models of Parkinson's disease during deep brain stimulation, IEEE Trans. Biomed. Eng, vol.63, pp.86-96, 2016.

A. P. Davison, D. Brüderle, J. M. Eppler, J. Kremkow, E. Muller et al., PyNN: a common interface for neuronal network simulators, Front. Neuroinformatics, vol.2, p.11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00586786

A. Destexhe, Z. Mainen, and T. Sejnowski, An efficient method for computing synaptic conductances based on a kinetic model of receptor binding, Neural Comput, vol.6, pp.14-18, 1994.

A. Destexhe and T. J. Sejnowski, The Wilson-Cowan model, 36 years later, Biol. Cybern, vol.101, pp.1-2, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00444899

G. I. Detorakis and A. Chaillet, Incremental stability of spatiotemporal delayed dynamics and application to neural fields, 56th IEEE Conference on Decision and Control (CDC), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01813326

M. Di-volo, A. Romagnoni, C. Capone, and A. Destexhe, Biologically realistic mean-field models of conductance-based networks of spiking neurons with adaptation, Neural Comput, vol.31, pp.653-680, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02363362

R. Eitan, H. Bergman, and Z. Israel, Closed-loop deep brain stimulation for Parkinson's disease, Surgery for Parkinson's Disease, pp.131-149, 2019.

A. Eusebio, W. Thevathasan, G. L. Doyle, A. Pogosyan, E. Bye et al., Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients, J. Neurol. Neurosurg. Psychiatry, vol.82, pp.569-573, 2011.

D. Farina, F. Negro, and J. Dideriksen, The effective neural drive to muscles is the common synaptic input to motor neurons, J. Physiol, vol.592, pp.3427-3441, 2014.

G. Faye and O. Faugeras, Some theoretical and numerical results for delayed neural field equations, Phys. D, vol.239, pp.561-578, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00847433

J. Fleming, E. Dunn, and M. Lowery, Simulation of closed-loop deep brain stimulation control schemes for suppression of pathological beta oscillations in Parkinson's disease, Front. Neurosci, vol.14, p.166, 2020.

A. Foust, Y. Yu, M. Popovic, D. Zecevic, and D. Mccormick, Somatic membrane potential and kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons, J. Neurosci, vol.31, pp.15490-15498, 2011.

A. L. Fradkov, I. V. Miroshnik, and V. O. Nikiforov, Nonlinear and Adaptive Control of Complex Systems, 1999.

L. L. Grado, M. D. Johnson, and T. I. Netoff, Bayesian adaptive dual control of deep brain stimulation in a computational model of parkinson's disease, PLoS Comput. Biol, vol.14, p.1006606, 2018.

P. Hahn and C. Mcintyre, Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation, J. Comput. Neurosci, vol.28, pp.425-441, 2010.

I. Haidar, W. Pasillas-lépine, A. Chaillet, E. Panteley, S. Palfi et al., Closed-loop firing rate regulation of two interacting excitatory and inhibitory neural populations of the basal ganglia, Biol. Cybern, vol.110, pp.55-71, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01270695

C. Hammond, H. Bergman, and P. Brown, Pathological synchronization in Parkinson's disease: networks, models and treatments, Trends Neurosci, vol.30, pp.357-364, 2007.

M. L. Hines and N. T. Carnevale, The NEURON simulation environment, Neural Comput, vol.9, pp.1179-1209, 1997.

P. Ioannou and B. Fidan, Adaptive Control Tutorial. Advances in Design and Control, 2006.

P. Ioannou and P. V. Kokotovic, Instability analysis and improvement of robustness of adaptive control, Automatica, vol.20, pp.583-594, 1984.

G. Kang and M. Lowery, Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network, IEEE Trans. Neural Syst. Rehabil. Eng, vol.21, pp.244-253, 2013.

G. Kang and M. Lowery, Effects of antidromic and orthodromic activation of STN afferent axons during dbs in parkinson's disease: a simulation study, Front. Comput. Neurosci, vol.8, p.32, 2014.

L. A. Koelman and M. M. Lowery, Beta-band resonance and intrinsic oscillations in a biophysically detailed model of the subthalamic nucleus-globus pallidus network, Front. Comput. Neurosci, vol.13, p.77, 2019.

A. A. Kühn, F. Kempf, C. Brücke, L. G. Doyle, I. Martinez-torres et al., High-frequency stimulation of the subthalamic nucleus suppresses oscillatory ? activity in patients with Parkinson's disease in parallel with improvement in motor performance, J. Neurosci, vol.28, pp.6165-6173, 2008.

A. A. Kühn, A. Kupsch, G. H. Schneider, and P. Brown, Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease, Eur. J. Neurosci, vol.23, 1956.

K. Kumaravelu, D. Brocker, and W. Grill, A biophysical model of the cortex-basal ganglia-thalamus network in the 6-ohda lesioned rat model of parkinson's disease, J. Comput. Neurosci, vol.40, pp.207-229, 2016.

Q. Li, Y. Ke, D. Chan, Z. Qian, K. Yung et al., Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex, Neuron, vol.76, pp.1030-1041, 2012.

S. Little, M. Beudel, L. Zrinzo, T. Foltynie, P. Limousin et al., Bilateral adaptive deep brain stimulation is effective in Parkinson's disease, J. Neurol. Neurosurg. Psychiatry, vol.87, pp.717-721, 2016.

S. Little, A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo et al., Adaptive deep brain stimulation in advanced Parkinson disease, Ann. Neurol, vol.74, pp.449-457, 2013.

V. Litvak, A. Jha, A. Eusebio, R. Oostenveld, T. Foltynie et al., Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease, Brain, vol.134, pp.359-374, 2011.

C. Liu, C. Zhou, J. Wang, C. Fietkiewicz, and K. A. Loparo, The role of coupling connections in a model of the cortico-basal ganglia-thalamocortical neural loop for the generation of beta oscillations, Neural Netw, vol.123, pp.381-392, 2020.

C. Liu, Y. Zhu, F. Liu, J. Wang, H. Li et al., Neural mass models describing possible origin of the excessive beta oscillations correlated with parkinsonian state, Neural Netw, vol.88, pp.65-73, 2017.

A. M. Lozano, N. Lipsman, H. Bergman, P. Brown, S. Chabardes et al., Deep brain stimulation: current challenges and future directions, Nat. Rev. Neurol, vol.15, pp.148-160, 2019.

P. J. Magill, J. P. Bolam, and M. D. Bevan, Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network, Neuroscience, vol.106, pp.313-330, 2001.

N. Mallet, A. Pogosyan, L. F. Márton, J. P. Bolam, P. Brown et al., Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity, J. Neurosci, vol.52, pp.14245-14258, 2008.

G. Mcconnell, R. So, J. Hilliard, P. Lopomo, and W. M. Grill, Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns, J. Neurosci, vol.32, pp.15657-15668, 2012.

L. Mcmanus, M. Flood, and M. Lowery, Beta-band motor unit coherence and nonlinear surface emg features of the first dorsal interosseous muscle vary with force, J. Neurophysiol, vol.122, pp.1147-1162, 2019.

A. J. Nevado-holgado, N. Mallet, P. J. Magill, and R. Bogacz, Effective connectivity of the subthalamic nucleus-globus pallidus network during parkinsonian oscillations, J. Physiol, vol.592, pp.1429-1455, 2014.

A. J. Nevado-holgado, J. R. Terry, and R. Bogacz, Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, J. Neurosci, vol.30, pp.12340-12352, 2010.

J. Obeso, C. Olanow, M. Rodriguez-oroz, P. Krack, R. Kumar et al., Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. New Engl, J. Med, vol.345, pp.956-963, 2001.

J. Or?owski, Adaptive control of time-delay systems to counteract pathological brain oscillations, 2019.

T. Otsuka, T. Abe, and W. Song, Conductance-based model of the voltage-dependent generation of a plateau potential in subthalamic neurons, J. Neurophysiol, vol.92, pp.255-264, 2004.

M. Parastarfeizabadi and A. Z. Kouzani, Advances in closedloop deep brain stimulation devices, J. Neuroeng. Rehabil, vol.14, p.79, 2017.

W. Pasillas-lépine, Delay-induced oscillations in Wilson and Cowan's model: an analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects, Biol. Cybern, vol.107, pp.289-308, 2013.

W. Pasillas-lépine, I. Haidar, A. Chaillet, and E. Panteley, Closed-loop deep brain stimulation based on firing-rate regulation, 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp.166-169, 2013.

A. Pavlides, S. John-hogan, and R. Bogacz, Improved conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network, Eur. J. Neurosci, vol.36, pp.2229-2239, 2012.

A. Pavlov, N. Van-de-wouw, and H. Nijmeijer, Frequency response functions for nonlinear convergent systems, IEEE Trans. Autom. Control, vol.52, pp.1159-1165, 2007.

D. Plenz and S. T. Kital, A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus, Nature, vol.400, pp.677-682, 1999.

O. V. Popovych and P. A. Tass, Adaptive delivery of continuous and delayed feedback deep brain stimulation -a computational study, Sci. Rep, vol.9, pp.1-17, 2019.

M. Pospischil, M. Toledo-rodriguez, C. Monier, Z. Piwkowska, T. Bal et al., Minimal hodgkin-huxley type models for different classes of cortical and thalamic neurons, Biol. Cybern, vol.99, pp.427-441, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00377075

M. Rosa, M. Arlotti, G. Ardolino, F. Cogiamanian, S. Marceglia et al., Adaptive deep brain stimulation in a freely moving parkinsonian patient, Mov. Disord, vol.30, pp.1003-1005, 2015.

B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-etzion, S. N. Haber et al., Closed-loop deep brain stimulation is superior in ameliorating parkinsonism, Neuron, vol.72, pp.370-384, 2011.

L. Rossi, G. Foffani, S. Marceglia, F. Bracchi, S. Barbieri et al., An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation, J. Neural Eng, vol.4, pp.96-106, 2007.

J. Rubin and D. Terman, High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model, J. Comput. Neurosci, vol.16, pp.211-235, 2004.

S. Santaniello, G. Fiengo, L. Glielmo, and W. M. Grill, Closed-loop control of deep brain stimulation: a simulation study, IEEE Trans. Neural Syst. Rehabil. Eng, vol.19, pp.15-24, 2010.

F. J. Santos, R. M. Costa, and F. Tecuapetla, Stimulation on demand: closing the loop on deep brain stimulation, Neuron, vol.72, pp.197-198, 2011.

S. A. Shah, G. Tinkhauser, C. C. Chen, S. Little, and P. Brown, Parkinsonian tremor detection from subthalamic nucleus local field potentials for closed-loop deep brain stimulation, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.2320-2324, 2018.

A. Sharott, P. J. Magill, D. Harnack, A. Kupsch, W. Meissner et al., Dopamine depletion increases the power and coherence of ?-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat, Eur. J. Neurosci, vol.21, pp.1413-1422, 2005.

O. Shouno, Y. Tachibana, A. Nambu, and K. Doya, Computational model of recurrent subthalamo-pallidal circuit for generation of parkinsonian oscillations, Front. Neuroanat, vol.11, p.21, 2017.

S. Stanslaski, P. Afshar, P. Cong, J. Giftakis, P. Stypulkowski et al., Design and validation of a fully implantable, chronic, closedloop neuromodulation device with concurrent sensing and stimulation, IEEE Trans. Neural Syst. Rehabil. Eng, vol.20, pp.410-421, 2012.

F. Su, K. Kumaravelu, J. Wang, and W. M. Grill, Model-based evaluation of closed-loop deep brain stimulation controller to adapt to dynamic changes in reference signal, Front. Neurosci, vol.13, p.956, 2019.

Y. Tachibana, H. Iwamuro, H. Kita, M. Takada, and A. Nambu, Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia, Eur. J. Neurosci, vol.34, pp.1470-1484, 2011.

Y. Tachibana, H. Kita, S. Chiken, M. Takada, and A. Nambu, , 2008.

, Motor cortical control of internal pallidal activity through glutamatergic and gabaergic inputs in awake monkeys, Eur. J. Neurosci, vol.27, pp.238-253

D. Terman, J. Rubin, A. Yew, W. , and C. , Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci, vol.22, pp.2963-2976, 2002.

N. Tukhlina, M. Rosenblum, A. Pikovsky, and J. Kurths, Feedback suppression of neural synchrony by vanishing stimulation, Phys. Rev. E, vol.75, p.11918, 2007.

A. Velisar, J. Syrkin-nikolau, Z. Blumenfeld, M. Trager, M. Afzal et al., Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients, Brain Stimul, vol.12, pp.868-876, 2019.

J. Volkmann, J. Herzog, F. Kopper, and G. Deuschl, Introduction to the programming of deep brain stimulators, Mov. Disord, vol.17, pp.181-187, 2002.

T. O. West, L. Berthouze, D. M. Halliday, V. Litvak, A. Sharott et al., Propagation of beta/gamma rhythms in the cortico-basal ganglia circuits of the parkinsonian rat, J. Neurophysiol, vol.119, pp.1608-1628, 2018.

N. Yeganefar, P. Pepe, and M. Dambrine, Input-to-State Stability of timedelay systems: a link with exponential stability, IEEE Trans. Autom. Control, vol.53, pp.1526-1531, 2008.