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A Introduction

This document contains supplementary material for the article “Sequential design of multi-

fidelity computer experiments: maximizing the rate of stepwise uncertainty reduction”. It is

organized as follows. Section B provides a short literature review on non-sequential designs

for multi-fidelity, which complements the literature review on sequential designs given in

Section 3.1 of the article. Section C provides (with proof) a new SUR criterion, which

covers as a special case the criterion provided (without proof) in Section 3.2 of the article.

Finally, Section D provides additional information regarding the examples presented in

Sections 4.2 and 4.3 of the article.

B Non-sequential designs in multi-fidelity

In this section, we provide a very brief literature review on non-sequential designs for

multi-fidelity.

A common recommendation for multi-level designs is nesting. A multi-level design

is nested when any observed point at a level δ(s) is also observed at every lower-fidelity

level δ(s′), s′ < s. Furthermore, space-filling designs are also expected to ensure observations

in the whole input domain, as usual in Gaussian process regression.

A simple method to create a nested design is proposed by Forrester et al. (2007). It

draws a maximin Latin Hypercube Sampling (LHS) at the lowest fidelity design, and then

selects subsets of this LHS at the next levels. Le Gratiet and Garnier (2014) suggest to

start with the highest-fidelity level and add points on the lower-fidelity levels to ensure

better space-filling properties. The reader is also referred to Rennen et al. (2010) for a

method which applies when there is only two levels of fidelity.

In our work, we use the method proposed by Qian (2009), which construct Nested Latin

Hypercube Sampling (NLHS). An NLHS is a nested design with the property of being an

LHS at each level of fidelity. We add a maximin optimization step to ensure that the design

is space-filling at each level.

Note that this method was extended in several directions. He and Qian (2011), Yang

et al. (2014), Guo et al. (2017), and Xu et al. (2017) propose methods to build NLHS with

particular structures, such as orthogonality.
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C A new SUR criterion

C.1 Criterion definition and result statement

Let ξ = (ξ(x))
x∈X

denote a Gaussian process prior for the mean response of a stochastic

simulator with Gaussian responses—i.e., a simulator which produces random responses

Z | ξ ∼ N (ξ(x), λ(x)) ,

where x ∈ X denotes the vector of inputs of the simulator and λ : X → [0, +∞) is a

known variance function. Assume that the quantity of interest is the probability function

α : X → [0, 1] defined by

α(x) = P

(
Zx > zcrit

)
,

where zcrit ∈ R is a given threshold and Zx denotes a (future) response of the simulator

with x as the input. More explicitely, we have

α(x) = Φ


ξ(x) − zcrit

√
λ(x)


 . (1)

Let α̂n(x) denote the posterior mean of α(x) given n responses Z1, . . . , Zn of the

simulator at design points X1, . . . , Xn ∈ X (possibly selected in a sequential manner). Let

µ denote a positive, bounded measure on X, and consider the measure of uncertainty Hn

defined by

Hn = En

(∫
(α(x) − α̂(x))2 µ(dx)

)
=
∫

varn (α(x)) µ(dx).

The following result provides a tractable expression for the corresponding SUR criterion

for a batch x̃ = (x̃l)1≤l≤q ∈ X
q of candidate points. The criterion presented in the article

corresponds to the fully sequential case (q = 1) and to a particular choice of the measure µ.

Proposition 1. Let mn (resp. kn) denote the posterior mean (resp. the posterior covari-

ance) of ξ given n observations. Let

Jn(x̃) = E

(
Hn+q

∣∣∣ Xn+1 = x̃1, . . . , Xn+q = x̃q

)

and Gn(x̃) = Hn − Jn(x̃). Then,

Jn(x̃) =
∫ [

Φ2(un(x), an(x); rn(x)) − Φ2(an(x), an(x); r̃n(x; x̃))
]

µ(dx)

and

Gn(x̃) =
∫ [

Φ2(an(x), an(x); r̃n(x; x̃)) − Φ(an(x))2
]

µ(dx),
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with Φ the cdf of the standard normal distribution, Φ2 (·, · ; ρ) the cdf of the standard bi-

variate normal distribution with correlation ρ, and

an(x) = (mn(x) − zcrit) /
√

vn(x), vn(x) = kn(x, x) + λ(x),

rn(x) = kn(x, x)/vn(x), r̃n(x; x̃) = νn(x, x; x̃)/vn(x),

νn(x, x
′; x̃) = kn(x, x

′) − kn+q(x, x
′; x̃) = kn(x̃, x)T Kn(x̃, x̃)−1kn(x̃, x

′),

kn(x̃, x) = (kn(x̃l, x))1≤l≤q , Kn(x̃, x̃) = (kn(x̃l, xl′) + λ(x̃l) · δl=l′))1≤l,l′≤q .

Remark 1. In the expressions of Jn(x̃) and Gn(x̃), the only part which depends on the

future design x̃ is
∫

Φ2(an(x), an(x); r̃n(x; x̃)) µ(dx), which must be maximized.

C.2 A useful identity

Let Φ̃d ( · ; m, K) denote the cumulative distribution function of the d-variate normal distri-

bution with mean m and covariance matrix K. The following identity is used by Chevalier

et al. (2014) for the computation of SUR criteria similar to ours.

Lemma 2. Let W ∼ N (m, K) be a d-dimensional Gaussian vector. Then, for any mean

vector m′ and covariance matrix K ′,

E

(
Φ̃d(W ; m′, K ′)

)
= Φ̃d(m; m′, K + K ′).

Proof. Let W ′ ∼ N (m′, K ′) be independent from W . Then

E

(
Φ̃d(W, m′, K ′)

)
= E

(
P

(
W ′ ≤ W

∣∣∣ W
))

= P(W ′ ≤ W ),

and, using that W ′ − W = W ′′ − m with W ′′ ∼ N (m′, K + K ′),

P(W ′ ≤ W ) = P(W ′′ ≤ m) = Φ̃d(m; m′, K + K ′).

Corollary 3. Let m, m′ ∈ R, v, v′ ∈ [0, +∞) and W ∼ N (m, v). Then

E

(
Φ

(
W − m′

√
v′

))
= Φ

(
m − m′

√
v + v′

)

and

E


Φ

(
W − m′

√
v′

)2

 = Φ2

(
m − m′

√
v + v′

,
m − m′

√
v + v′

;
v

v + v′

)
.
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C.3 Proof of Proposition 1

Proof. Recall from (1) that

α(x) = Φ


ξ(x) − zcrit

√
λ(x)


 .

It follows from Corollary 3 that

En+q (α(x)) = Φ


 mn+q(x) − zcrit

√
λ(x) + kn+q(x, x)


 = Φ


mn+q(x) − zcrit

√
vn+q(x)


 , (2)

and thus

varn+q (α(x)) = En+q

(
α(x)2

)
− Φ


mn+q(x) − zcrit

√
vn+q(x)




2

. (3)

Let us now compute separately the expectation with respect to Pn of the two terms in

the right-hand side of (3). For the first term we have

En

(
En+q

(
α(x)2

))
= En

(
α(x)2

)
= En


Φ


ξ(x) − zcrit

√
λ(x)




2



= Φ2 (an(x), an(x); rn(x)) , (4)

where we have applied the second part of Corollary 3 with m = mn(x), v = kn(x, x),

m′ = zcrit, and v′ = λ(x). For the second term we observe that, under Pn, mn+q is a

Gaussian process with mean mn and covariance function νn( ·, · ; x̃). Therefore mn+q(x) ∼
N (mn(x), ν(x, x; x̃), and it follows that

En


Φ


mn+q(x) − zcrit

√
vn+q(x)




2

 = Φ2 (an(x), an(x); r̃n(x)) , (5)

where we have used again the second part of Corollary 3 with m = mn(x), v = νn(x, x; x̃),

m′ = zcrit and v′ = vn+q(x). Indeed,

v + v′ = νn(x, x; x̃) + vn+q(x)

= (kn(x, x) − kn+q(x, x)) + (kn+q(x, x) + λ(x)) = vn(x),

therefore

m − m′

√
v + v′

=
mn(x) − zcrit

√
vn

= an(x),

v

v + v′
=

νn(x, x; x̃)

vn(x)
= r̃n(x).
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Combining (3)–(5) and integrating on X with respect to µ yields the desired expression

for Jn(x). Similarly, combining (2) with q = 0 and (4) we have

Hn =
∫ (

Φ2 (an(x), an(x); rn(x)) − Φ (an(x))2
)

µ(dx)

and the expression of Gn(x̃) follows.

D Additional information regarding the examples

D.1 One-dimensional example

This section provides additional information regarding the Bayesian model used in the

“One-dimensional example” presented in Section 4.2 of the article.

The model used in this example is the one proposed by Kennedy and O’Hagan (2000)

and reviewed in Section 2.1 of the article, with S = 2 levels. The two independent Gaussian

processes η1 and η2 are stationary processes with unknown constant means and Matérn

covariance functions with regularity 5/2:

ηs ∼ GP

(
ms, σ2

s M5/2 (as(· − ·))
)

, s ∈ {1, 2}.

Independent priors are used for all the remaining hyper-parameters of the model:

• Improper uniform prior distributions on R are used for the means ms.

• The parameters of the covariance function follow log-normal distributions:

log(σ2
s) ∼ N (2 log(0.2), log(100)2),

log(as) ∼ N (log(2), log(10)2).

• Finally, the regression term between the two levels follows a normal prior distribution:

ρ ∼ N (1, 22).

D.2 Random damped harmonic oscillator

This section provides additional information regarding the explicit exponential Euler scheme

used in the “Random damped harmonic oscillator” example (Section 4.3 of the article).
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Consider a stochastic differential equation

dYt = AYt dt + b dBt,

where (Yt) is a vector-valued stochastic process, (Bt) a Wiener process, b a vector and A a

matrix. Let δ a time step, we would like to approximate (Yt) by a finite difference method:

Y
(δ)

k ≈ Ykδ. The explicit exponential Euler scheme is a finite difference method proposed by

Jentzen and Kloeden (2009) to ensure stability when approximating a stochastic equation.

The method is to apply recursively the formula

Y
(δ)

k+1 = exp (Aδ)
[
Y

(δ)
k +

√
2πSδ · b · U

]

with S the spectral intensity of the Brownian motion, and U a normal random vector.

In particular, for the application of Section 4.2, we have

d




Yt

Ẏt


 =




0 1

−ω2
0 −2ζω0







Yt

Ẏt


 dt +




0

1


 dBt.

Consequently, the approximation with a finite time-step δ is




Y
(δ)

k+1

Ẏ
(δ)

k+1


 = exp




0 δ

−ω2
0δ −2ζω0δ










Y
(δ)

k

Ẏ
(δ)

k


+




0
√

2πSδu





 , u ∼ N (0, 1).

References

Chevalier, C., Bect, J., Ginsbourger, D., Vazquez, E., Picheny, V., and Richet, Y. (2014).

Fast parallel kriging-based stepwise uncertainty reduction with application to the iden-

tification of an excursion set. Technometrics, 56(4):455–465.

Forrester, A. I. J., Sóbester, A., and Keane, A. J. (2007). Multi-fidelity optimization

via surrogate modelling. Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, 463(2088):3251–3269.

Guo, B., Chen, X.-P., and Liu, M.-Q. (2017). Construction of latin hypercube designs with

nested and sliced structures. Statistical Papers, pages 1–14.

He, X. and Qian, P. Z. G. (2011). Nested orthogonal array-based latin hypercube designs.

Biometrika, 98(3):721–731.

8



Jentzen, A. and Kloeden, P. E. (2009). Overcoming the order barrier in the numerical

approximation of stochastic partial differential equations with additive space–time noise.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, 465(2102):649–667.

Kennedy, M. C. and O’Hagan, A. (2000). Predicting the output from a complex computer

code when fast approximations are available. Biometrika, 87(1):1–13.

Le Gratiet, L. and Garnier, J. (2014). Recursive co-kriging model for design of computer

experiments with multiple levels of fidelity. International Journal for Uncertainty Quan-

tification, 4(5):365–386.

Qian, P. Z. G. (2009). Nested latin hypercube designs. Biometrika, 96(4):957–970.

Rennen, G., Husslage, B., Van Dam, E. R., and Den Hertog, D. (2010). Nested maximin

latin hypercube designs. Structural and Multidisciplinary Optimization, 41(3):371–395.

Xu, J., Duan, X., Wang, Z., and Yan, L. (2017). A general construction for nested latin

hypercube designs. Statistics & Probability Letters.

Yang, J., Liu, M.-Q., and Lin, D. K. J. (2014). Construction of nested orthogonal latin

hypercube designs. Statistica Sinica, 24(1):211–219.

9


	Introduction
	Non-sequential designs in multi-fidelity
	A new SUR criterion
	Criterion definition and result statement
	A useful identity
	Proof of Proposition 1

	Additional information regarding the examples
	One-dimensional example
	Random damped harmonic oscillator


