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Abstract—A cell-free Massive multiple-input multiple-output

(MIMO) system is considered using a max-min approach to

maximize the minimum user rate with per-user power con-

straints. First, an approximated uplink user rate is derived

based on channel statistics. Then, the original max-min signal-

to-interference-plus-noise ratio (SINR) problem is formulated for

optimization of receiver filter coefficients at a central processing

unit (CPU), and user power allocation. To solve this max-min

non-convex problem, we decouple the original problem into two

sub-problems, namely, receiver filter coefficient design and power

allocation. The receiver filter coefficient design is formulated as a

generalized eigenvalue problem whereas geometric programming

(GP) is used to solve the user power allocation problem. Based

on these two sub-problems, an iterative algorithm is proposed,

in which both problems are alternately solved while one of

the design variables is fixed. This iterative algorithm obtains

a globally optimum solution, whose optimality is proved through

establishing an uplink-downlink duality. Moreover, we present a

novel sub-optimal scheme which provides a GP formulation to

efficiently and globally maximize the minimum uplink user rate.

The numerical results demonstrate that the proposed scheme

substantially outperforms existing schemes in the literature.

Index Terms—Cell-free Massive MIMO, max-min resource

allocation, geometric programming, uplink-downlink duality,

convex optimization, generalized eigenvalue problem.

I. INTRODUCTION

Future fifth generation (5G) wireless communication net-

works will deliver a wide range of new user services and

dramatically increased data rates. Massive multiple-input

multiple-output (MIMO) has been recognized as one of the

key elements of 5G systems, due to its potential for extremely

high spectral efficiency. [1]–[3]. This paper considers cell-free
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Massive MIMO which has received much attention recently

because of its potential to ensure uniformly good service

throughput for all users [4]–[9]. Cell-free Massive MIMO is

a combination of distributed MIMO and Massive MIMO, and

there is no cell boundary [4]. It is a scalable version of network

MIMO which is also called coordinated multipoint processing

(CoMP) [10], [11]. The distributed access points (APs) are

connected to a central processing unit (CPU) via high capacity

backhaul links [4]. Cell-free Massive MIMO is thus also a

scalable version of the cloud radio access network (CRAN).

In CRAN, there are heavy communication burdens on the

backhaul, and computation burdens on the CPU, as all signal

processing is performed at the CPU [12]. The fog radio access

network (FRAN) [13] can overcome some of the problems of

CRAN. It moves some signal processing functionalities from

the CPU back to the AP, where in this case the APs can also

perform part of the signal processing. Hence, the tasks required

of the CPU can also be reduced. The more processing is moved

to the AP, the less is the burden imposed on the CPU.

In [4], [6], [14] the authors propose that the APs design

the linear receivers based on the estimated channels, and that

this is carried out locally at the APs. Hence, the CPU exploits

only the statistics of the channel for data detection. However,

in this paper, we propose to exploit a new receiver filter at the

CPU to improve the performance of cell-free Massive MIMO

systems. The coefficients of the proposed receiver filter are

designed based on only the statistics of the channel, which

is different from the linear receiver at the APs. The proposed

receiver filter provides more freedom in the design parameters,

and hence significantly improves the performance of the uplink

of cell-free Massive MIMO. In other words, the receiver filter

coefficients are designed after exploiting linear detection at the

CPU. Therefore, the uplink problem in the present paper is

different from the problem studied in [4], as discussed below.

In this paper, we investigate an uplink max–min signal-

to-interference-plus-noise ratio (SINR) problem in a cell-free

Massive MIMO system. In particular, we propose a new

approach to solve this max-min problem. A similar max–min

SINR problem based on SINR known as SINR balancing in

the literature has been considered in [15]–[20]. In [21], [22],

the authors consider MIMO systems and study the problem of

max-min user SINR to maximize the smallest user SINR. Note

that the same max-min problem is investigated in an uplink

cell-free Massive MIMO systems in [4] where user power

allocation is utilized by using a bisection search approach.
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However, the max-min SINR problem considered in this paper

is different from the scheme in [4] due to the design parameters

(in terms of receiver filter coefficients and user power allo-

cation) and solution approach. In particular, the receiver filter

coefficients and power allocation are optimized in the proposed

approach whereas the work in [4] only considered user power

allocations. First, we derive the average SINR of the user by

incorporating a matched filtering receiver and formulate the

corresponding max-min SINR problem. This original max-

min problem in terms of receiver filter coefficients and power

allocations is not jointly convex. To circumvent this non-

convexity issue, we decompose the original problem into two

sub-problems, namely, receiver filter coefficient design, and

power allocation. It is shown that the receiver filter coefficient

design problem can be solved through a generalized eigenvalue

problem [23] whereas the user power allocation problems can

be formulated using standard geometric programming (GP)

[24], [25]. An iterative procedure is proposed whereby at

each iteration, one of the sub-problems is solved while the

other design variable is fixed. To validate the optimality of

the proposed scheme, we show that there exists an equivalent

downlink problem to realize the same user rate in the uplink

with an equivalent total power constraint and the same receiver

filter coefficients. By solving this equivalent problem, the

optimality of the proposed scheme in the uplink is proved. The

problem of uplink-downlink duality has been investigated in

[21], [26]–[29]. Simulation results are provided to demonstrate

the performance of the proposed scheme which confirms that

the proposed scheme outperforms the scheme in [4] in terms of

achieved user rate. In addition, we propose a new sub-optimal

max-min SINR scheme using a GP formulation which does

not require any iterative approach as in [4]. The contributions

and results are as follows:

1. To improve the performance of the system, we propose

to use a novel receiver filter, operating at the CPU,

which can be designed based only on the statistics of

the channel. Note that this is different from the linear

matched filtering receiver in [4].

2. The uplink user throughput using the proposed filter

is derived based on channel statistics and taking into

account the effects of channel estimation errors and the

effect of pilot sequences. We propose a novel approach to

solve the uplink max-min SINR problem, decoupling the

original problem into two sub-problems, which are solved

using an iterative algorithm. These sub-problems are

formulated as GP and a generalized eigenvalue problem,

and both sub-problems are solved at each iteration.

3. We prove that the proposed iterative algorithm provides

the globally optimal solution for the original non-convex

max-min SINR problem. The optimality of the proposed

algorithm is proved through establishing the uplink-

downlink duality for cell-free Massive MIMO.

4. We present a sub-optimal max-min SINR scheme by

formulating it into a standard GP which does not require

an iterative approach and shows the same performance as

in [4].

5. We present the complexity analysis of different schemes.

Figure 1. The uplink of a cell-free Massive MIMO system with K single-

antenna users and M APs. The solid lines denote the uplink channels and the

dashed lines present the backhaul links from the APs to the CPU.

6. We present numerical results supporting the convergence

analysis and the theoretical derivations of the optimality

of the proposed schemes.

A. Outline

The rest of the paper is organized as follows. Section

II describes the system model, and Section III provides

performance analysis. The proposed max-min SINR scheme

is presented in Section IV and the convergence analysis is

provided in Section V. The optimality of the proposed scheme

is proved in Section VI. Section VII investigates a sub-optimal

max-min SINR scheme. Complexity analysis and a proposed

user assignment scheme are presented in Section VIII and

Section IX, respectively. Finally, Section X provides numerical

results while Section XI concludes the paper.

B. Notation

The following notations are adopted in the rest of the

paper. Uppercase and lowercase boldface letters are used for

matrices and vectors, respectively. The notation E{·} denotes

expectation. | · | stands for absolute value. The conjugate

transpose of vector x is xH , and XT denotes the transpose of

matrix X. In addition, x ∼ CN(0, σ2) represents a zero-mean

circularly symmetric complex Gaussian random variable with

variance σ2.

II. SYSTEM MODEL

We consider uplink transmission in a cell-free Massive

MIMO system with M single-antenna APs and K randomly

distributed single-antenna users in the area, as shown in Fig.

1. The channel coefficient between the kth user and the mth

AP, gmk , is modeled as [4]

gmk =

√
βmkhmk, (1)

where βmk denotes the large-scale fading and hmk ∼ CN(0,1)
represents small-scale fading between the kth user and the mth

AP.

A. Uplink Channel Estimation

In order to estimate channel coefficients in the uplink, the

APs employ an minimum mean-square error (MMSE) esti-

mator. During the training phase, all K users simultaneously
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transmit their pilot sequences of length τ symbols to the APs.

Let
√
τφφφk ∈ Cτ×1, where ‖φφφk ‖2 = 1, be the pilot sequence

assigned to the kth user. Then, the received signal at the mth

AP is given by

y
p
m =
√
τpp

K∑
k=1

gmkφφφk + w
p
m, (2)

where vector w
p
m ∈ Cτ×1 is the noise whose elements are

i.i.d CN(0,1). Next, the APs exploit the pilot sequence φφφk to

correlate the received signal with the pilot sequence as follows

[4]:

y̌
p

m,k
= φφφHk y

p
m =
√
τppgmk +

√
τpp

K∑
k′,k

gmk′φφφ
H
k φφφk′ + Ûw

p

mk
,

where Ûwp

mk
, φφφH

k
w

p
m. The linear MMSE estimate of gmk is

ĝmk =

E

{
gmk y̌

p

m,k

}

E

{���y̌p

m,k

���2
} y̌

p

m,k

= cmk

(
√
τppgmk+

√
τpp

K∑
k′,k

gmk′φφφ
H
k φφφk′+ Ûw

p

mk

)
, (3)

where cmk is obtained as [4]

cmk =

√
τppβmk

τpp

∑K
k′=1 βmk′

��φφφH
k
φφφk′

��2
+ 1

. (4)

Note that, as in [4], we assume that the large-scale fading, βmk ,

is known. The estimated channels in (3) are used by the APs

to design the receiver filter coefficients and determine power

allocations at users to maximize the minimum rate of the users.

In this paper, we investigate the cases of both random pilot

assignment and orthogonal pilots in cell-free Massive MIMO.

Here the term “orthogonal pilots” refers to the case where

unique orthogonal pilots are assigned to all users, while in

“random pilot assignment” each user is randomly assigned a

pilot sequence from a set of orthogonal sequences of length τ

(< K), following the approach of [4], [30].

B. Uplink Transmission

In this subsection, we consider the uplink data transmission,

where all users send their signals to the APs. The transmitted

signal from the kth user is represented by

xk =
√
ρ qk sk, (5)

where sk (E{|sk |2} = 1) and qk denote the transmitted

symbol and the transmit power from the kth user, respectively.

Moreover, ρ refers to the normalized uplink SNR. The received

signal at the mth AP from all users is given by

ym =
√
ρ

K∑
k=1

gmk

√
qk sk + nm, (6)

where nm ∼ CN(0,1) is the noise at the mth AP. In addition, a

matched filtering approach is employed at the APs, in that the

received signal is weighted appropriately. More precisely, the

received signal at the mth AP, ym, is first multiplied by ĝ
∗
mk

.

The resulting ĝ
∗
mk

ym is then forwarded to the CPU for signal

detection. In order to improve achievable rate, the forwarded

signal is further multiplied by a receiver filter coefficient at

the CPU. The aggregated received signal at the CPU can be

written as

rk =

M∑
m=1

umk ĝ
∗
mk ym

=

√
ρ

K∑
k′=1

M∑
m=1

umk ĝ
∗
mkgmk′

√
qk′sk′ +

M∑
m=1

umk ĝ
∗
mknm. (7)

By collecting all the coefficients umk, ∀ m corresponding

to the kth user, we define uk = [u1k,u2k, · · · ,uMk]T and

without loss of generality, it is assumed that | |uk | | = 1.

The optimal solution for uk,qk, ∀ k for the considered max-

min SINR approach is investigated in Section IV. Similar to

[4], [6], [14], we assume that the APs are connected to the

CPU via perfect backhaul connections. Such perfect backhaul

links might be established through fiber links between the

APs and the CPU. Moreover, based on [31], copper-based

backhaul links can provide a capacity of 750 Mbits/s for a

maximum distance of 1.5 km between the APs and the CPU.

In [32]–[36], the authors show that exploiting optimal uniform

quantization and wireless microwave links with capacity 100

Mbits/s [37], the performance of limited-backhaul cell-free

Massive MIMO system closely approaches the performance

of cell-free Massive MIMO with perfect backhaul links.

III. PERFORMANCE ANALYSIS

In this section, we derive the achievable rate for the consid-

ered system model by following a similar approach to [4]. Note

that the main difference between the proposed approach and

the scheme in [4] is the new set of receiver filter coefficients

which are introduced at the CPU to improve the achievable

user rate. The benefits of the proposed approach in terms of

the achievable uplink rate are demonstrated by the numerical

results in Section V. In deriving the achievable rate of each

user, it is assumed that the CPU exploits only the knowledge

of channel statistics between the users and APs in detecting

data from the received signal in (7). Without loss of generality,

the aggregate received signal in (7) can be written as

rk =

√
ρE

{
M∑
m=1

umk ĝ
∗
mkgmk

√
qk

}
︸                               ︷︷                               ︸

DSk

sk

+

√
ρ

(
M∑
m=1

umk ĝ
∗
mkgmk

√
qk−E

{
M∑
m=1

umk ĝ
∗
mkgmk

√
qk

})
︸                                                             ︷︷                                                             ︸

BUk

sk

+

K∑
k′,k

√
ρ

M∑
m=1

umk ĝ
∗
mkgmk′

√
qk′

︸                          ︷︷                          ︸
IUIkk′

sk′ +

M∑
m=1

umk ĝ
∗
mknm

︸            ︷︷            ︸
TNk

, (8)

where DSk and BUk denote the desired signal (DS) and

beamforming uncertainty (BU) for the kth user, respectively,
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RUP
k = log2

©­­­­«
1 +

uH
k

(
qkΓkΓ

H
k

)
uk

uH
k

(∑K
k′,k qk′ |φφφHk φφφk′ |2∆kk′∆

H
kk′ +

∑K
k′=1 qk′Dkk′ +

1

ρ
Rk

)
uk

ª®®®®¬
. (10)

and IUIkk′ represents the inter-user-interference (IUI) caused

by the k ′th user. In addition, TNk accounts for the total noise

(TN) following the matched filtering. The corresponding SINR

of the received signal in (8) can be defined by considering the

worst-case of the uncorrelated Gaussian noise as follows [4]:

SINRUP
k =

|DSk |2

E{|BUk |2}+
∑K

k′,k E{|IUIkk′ |2}+E{|TNk |2}
. (9)

Based on the SINR definition in (9), the achievable uplink

rate of the kth user is defined in the following theorem:

Theorem 1. By employing the matched filtering approach at

the APs, the achievable uplink rate of the kth user in the

cell-free Massive MIMO system with K randomly distributed

single-antenna users and M single-antenna APs is given by

(10) (defined at the top of this page). Note that in (10), we

have

Γk = [γ1k, γ2k, · · · , γMk]T ,

uk = [u1k,u2k, · · · ,uMk]T ,

∆kk′ = [
γ1k β1k′

β1k

,
γ2k β2k′

β2k

, · · · , γMk βMk′

βMk

]T ,

Rk = diag [γ1k, γ2k, · · · , γMk] ,

Dkk′ = diag [β1k′γ1k, β2k′γ2k, · · · , βMk′γMk] .

(11a)

(11b)

(11c)

(11d)

(11e)

Proof: Please refer to Appendix A. �

Note that the achievable rate in (10) is a function of only

large-scale fading which changes less often than the actual

channel. Hence, the rate formula and accordingly the power

coefficients only need to be calculated when the large-scale

fading changes. Therefore, the APs do not need frequently to

update the CPU with the instantaneous channel state and the

user rates will change only when the positions of the users

change. Moreover, in cell-free massive MIMO, due to the

channel hardening property, detection using only the channel

statistics is nearly optimal [4].

IV. PROPOSED MAX-MIN SINR SCHEME

In this section, we formulate the max-min user-fairness

problem in the cell-free massive MIMO, where the minimum

uplink rates of all users is maximized while satisfying the

per-user power constraint. This max-min rate problem can be

formulated as the following optimization framework:

P1 : max
qk ,uk

min
k=1, · · · ,K

RUP
k ,

s.t. | |uk | | = 1, ∀ k,

0 ≤ qk ≤ p
(k)
max, ∀ k,

(12a)

(12b)

(12c)

where p
(k)
max is the maximum transmit power available at user

k. From (10), it can be observed that in the denominator of

the expression for the uplink SINR, the power coefficients

qk′, k
′
, k are coupled with the receiver filter uk . Therefore,

it is not possible to define a new variable wk =
√

qkuk ,

and solve the problem jointly in terms of uk and qk . As a

result, Problem P1 is not jointly convex in terms of uk and

power allocation qk, ∀ k. Therefore, this problem cannot be

directly solved through existing convex optimization software.

To tackle this non-convexity issue, we decouple the original

problem P1 into two sub-problems: receiver filter coefficient

design (i.e., uk) and the power allocation problem. To obtain

a solution for Problem P1, these sub-problems are alternately

solved as explained in the following subsections.

A. Receiver Filter Coefficient Design

In this subsection, we solve the receiver coefficient design

problem to maximize the uplink rate of each user for a given

set of transmit power allocations at all users. By following

the analysis in [21], [26], [27], the receiver filter coefficients

(i.e., uk , ∀k) can be obtained by independently maximizing

the uplink SINR of each user. Therefore, the optimal receiver

filter coefficients for all users for a given set of transmit

power allocations can be determined by solving the following

optimization problem:

P2 : max
uk

u
H
k

(
qkΓkΓ

H
k

)
uk

u
H
k

(∑K
k′,k qk′ |φφφHk φφφk′ |2∆kk′∆

H
kk′+

∑K
k′=1 qk′Dkk′+

1
ρ
Rk

)
uk

s.t. | |uk | | = 1, ∀ k .

(13a)

(13b)

(13c)

Problem P2 is a generalized eigenvalue problem [23], where

the optimal solutions can be obtained by determining the

generalized eigenvalue of the matrix pair Ak = qkΓkΓ
H
k

and Bk =
∑K

k′,k qk′ |φφφHk φφφk′ |
2
∆kk′∆

H
kk′ +

∑K
k′=1 qk′Dkk′ +

1
ρ

Rk

corresponding to the maximum generalized eigenvalue.

B. Power Allocation

In this subsection, we solve the power allocation problem

for a given set of fixed receiver filter coefficients which can

be formulated as the following max-min problem:

P3 : max
qk

min
k=1, · · · ,K

SINRUP
k ,

s.t. 0 ≤ qk ≤ p
(k)
max.

(14a)

(14b)

Without loss of generality, Problem P3 can be rewritten by

introducing a new slack variable as

P4 : max
t ,qk

t,

s.t. 0 ≤ qk ≤ p
(k)
max, ∀ k,

SINRUP
k ≥ t, ∀ k .

(15a)

(15b)

(15c)Proposition 1. Problem P4 can be formulated into a standard

GP.
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Algorithm 1 Proposed algorithm to solve Problem P1

1. Initialize q(0) = [q(0)
1
,q
(0)
2
, · · · ,q(0)

K
], i = 1

2. Repeat

3. i = i + 1

4. Set q(i) = q(i−1) and determine the optimal receiver

coefficients U(i) = [u(i)
1
,u
(i)
2
, · · · ,u(i)

K
] through solving the

generalized eigenvalue Problem P2 in (13)

5. Compute q(i+1) through solving Problem P4 in (15)

6. Go back to Step 3 and repeat until required accuracy

Proof: Please refer to Appendix B. �

Therefore, this problem can be efficiently solved through ex-

isting convex optimization software. Based on these two sub-

problems, an iterative algorithm is developed by alternately

solving each sub-problem at each iteration. The proposed

algorithm is summarized in Algorithm 1.

V. CONVERGENCE ANALYSIS

In this section, the convergence analysis of the proposed

Algorithm 1 is provided. Two sub-problems are alternately

solved to determine the solution to Problem P1. At each iter-

ation, one of the design parameters is determined by solving

the corresponding sub-problem while other design variable is

fixed. Note that each sub-problem provides an optimal solution

for the other given design variable. At the ith iteration, the

receiver filter coefficients u
(i)
k
, ∀k are determined for a given

power allocation q(i) and similarly, the power allocation q(i+1)

is updated for a given set of receiver filter coefficients u
(i)
k
, ∀k.

The optimal power allocation q(i+1) obtained for a given u
(i)
k

achieves an uplink rate greater than or equal to that of the

previous iteration. In addition, the power allocation q(i) is also

a feasible solution in determining q(i+1) as the receiver filter

coefficients u
(i+1)
k

, ∀k are determined for a given q(i). This

reveals that the achieved uplink rate monotonically increases

with each iteration, which can be also observed from the

simulation results presented in Figs. 8 and 9. As the achievable

uplink max-min rate is upper bounded by a certain value

for a given set of per-user power constraints, the proposed

algorithm converges to a particular solution. Fortunately, the

proposed Algorithm 1 converges to the optimal solution, as

we will prove by establishing the uplink-downlink duality in

the following section.

VI. OPTIMALITY OF THE PROPOSED MAX-MIN SINR

ALGORITHM

In this section, we prove the optimality of the proposed

max-min SINR scheme in Algorithm 1. In general, converting

the original non-convex problem into two sub-problems would

remove the global optimality. However, the global optimality

of the proposed Algorithm 1 can be proved as follows: first, we

show that the solution of the original max-min Problem P1 can

be obtained by solving an uplink problem with an equivalent

total power constraint instead of the per-user power constraint.

Then, an uplink-downlink duality is established by proving

that the same SINRs can be achieved in both the uplink

and the downlink with an equivalent total power constraint.

In other words, the same SINRs in the uplink Problem P1

can be realized by solving an equivalent downlink problem.

Finally, we present a bisection approach to determine the

optimal solution of the equivalent downlink problem. Since

both the uplink Problem P1 and the equivalent downlink

problem achieve the same SINRs and the solution of the

downlink problem is optimal, it is straightforward to conclude

that Algorithm 1 yields the optimal solution for the considered

uplink max-min SINR problem in P1. The details of the proof

are provided in the following subsections.

A. Equivalent Max-Min Uplink Problem

In this subsection, we show that both Problem P1 with per-

user power constraint and the uplink max-min fairness problem

with the total power constraint achieve the same user rate.

In the total power constraint, the maximum available transmit

power is defined as the summation of all users’ transmit power

from the solution of Problem P1, which can be written as

follows:

Pc
tot =

K∑
k=1

q∗k, (16)

where q∗
k

is the power allocated to the kth user obtained by

solving problem P1 (Algorithm 1). The equivalent uplink max-

min problem with this total power constraint can be formulated

as follows:

P5 : max
qk ,uk

min
k=1, · · · ,K

RUP
k ,

s.t. | |uk | | = 1, ∀ k,

K∑
k=1

qk ≤ Pc
tot.

(17a)

(17b)

(17c)

Similar to the original Problem P1, Problem P5 is not jointly

convex in terms of receiver filter coefficients uk and power

allocation qk,∀k. However, we modify Algorithm 1 to incor-

porate the total power constraint in Problem P5. Similar to the

alternate optimization approach for Problem P1, Problem P5

is decoupled into receiver filter coefficient design and power

allocation sub problems. The same generalized eigenvalue

problem in Problem P2 is solved to determine the receiver

filter coefficients whereas the GP formulation in P4 is adapted

to incorporate the total power constraint (17c). This is a convex

constraint (posynomial function in terms of power allocation)

and the power allocation problem (GP) with the equivalent

total power constraint remains as a convex problem.

Lemma 1. Both the original Problem P1 and Problem P5

yield the same solution with per-user power constraint and

equivalent total power constraint.

Proof: Please refer to Appendix C. �
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SINRDL
k (U,p) =

uH
k

(
pkΓkΓ

H
k

)
uk∑K

k′,k uH
k′ pk′

��φφφH
k′φφφk

��2 Λk′kΛ
H
k′kuk′ +

∑K
k′=1 uH

k′ pk′Υk′kuk′ +
1
ρ

. (18)

SINRUP
k (U,q) =

uH
k

(
qkΓkΓ

H
k

)
uk

uH
k

(∑K
k′,k qk′

��φφφH
k
φφφk′

��2 ∆kk′∆Hkk′ +∑K
k′=1 qk′Dkk′ +

1
ρ

Rmk

)
uk

. (19)

B. Uplink-Downlink Duality for Cell-free Massive MIMO

In this subsection, we establish an uplink-downlink duality

for cell-free Massive MIMO systems. In particular, it is shown

that the same SINRs (or rate regions) can be realized for all

users in the uplink and the downlink with the equivalent total

power constraints, respectively [26]–[28], [38]. In other words,

the same set of filter coefficients can be utilized in the uplink

and the downlink to achieve the same SINRs for all users

with different user power allocations. The following theorem

defines the achievable downlink rate for cell-free Massive

MIMO systems:

Theorem 2. By employing conjugate beamforming at the APs,

the achievable downlink rate of the kth user in the cell-free

Massive MIMO system with K randomly distributed single-

antenna users and M single-antenna APs is given by (18)

(defined at the top of this page).

Proof: This can be derived by following the same approach

as for the uplink in Theorem 1. �

Note that the symbol Λk′k , in (18), is defined as

Λk′k =

[
γ1k′β1k

β1k′
,
γ2k′β2k

β2k′
, · · · , γMk′βMk

βMk′

]T
, and Υk′k

denotes the diagonal matrix whose diagonal entries are

[γ1k′β1k, γ2k′β2k, · · · , γMk′βMk]. In addition, pk, ∀k denotes

the downlink power allocation for the kth user. The following

Theorem provides the required condition to establish the

uplink-downlink duality for cell-free Massive MIMO systems:

Theorem 3. By employing matched filtering in the uplink and

conjugate beamforming in the downlink, to realize the same

SINR tuples in both the uplink and the downlink of a cell-free

Massive MIMO system, with the same filter coefficients and

different transmit power allocations, the following condition

should be satisfied:

M∑
m=1

K∑
k=1

γmk |wmk |2 =
K∑
k=1

q∗k = Pc
tot, (20)

where wmk denotes the (m, k)-th entry of matrix W which is

defined as follows:

W = [√p1u1,
√

p2u2, · · · ,
√

pKuK ]. (21)

Proof: Please refer to Appendix D. �
C. Equivalent Max-Min Downlink Problem

In this subsection, we present an optimal approach to solve

the max-min SINR downlink problem with the equivalent total

power constraint. This user-fairness problem can be formulated

as follows: P6 : max
pk ,uk

min
k=1, · · · ,K

RDL
k ,

s.t. | |uk | | = 1, ∀ k,

K∑
k=1

pk ≤ Pc
tot,

(22a)

(22b)

(22c)

where RDL
k
= log2(1+SINRDL

k
), and SINRDL

k
is defined in (18).

This problem is difficult to jointly solve in terms of transmit

filter coefficients uk’s and power allocations pk’s. However,

similar to [4], it can be reformulated by introducing a new

variable by coupling both of these variables as follows:

P7 : max
W

min
k=1, · · · ,K

RDL
k ,

s.t.

M∑
m=1

K∑
k=1

γmk |wmk |2 ≤ Pc
tot.

(23a)

(23b)

It can be easily shown that Problem P7 is quasi-convex,

therefore a bisection approach can be exploited to obtain the

optimal solution for the original Problem P7 by sequentially

solving the following power minimization problem for a given

target SINR t at all users:

P8 : min
W

M∑
m=1

K∑
k=1

γmk |wmk |2

s.t.
wH
k

(
ΓkΓ

H
k

)
wk∑K

k′,kwH
k′

��φφφH
k′φφφk

��2 Λk′kΛ
H
k′kwk′+

∑K
k′=1wH

k′Υk′kwk′+
1
ρ

≥ t,

M∑
m=1

K∑
k=1

γmk |wmk |2 ≤ Pc
tot,

(24a)

(24b)

(24c)

where wk represents the kth column of the matrix W defined

in (21). Second order cone programming (SOCP) can be

exploited to reformulate Problem P8 as a convex one. More

precisely, for a given t, Problem P8 can be reformulated as

follows:

Prewrite
8 : min

W

M∑
m=1

K∑
k=1

γmk |wmk |2 , (25a)

s.t .




| |zk | | ≤
∑M

m=1[Γk]mwmk√
t

,∀k,

M∑
m=1

[Λk′k]mwmk′ ≤ χk′k,∀k ′ , k,

M∑
m=1

[Υk′k]mw2
mk′ ≤ ψ

2
k′k,∀k,

M∑
m=1

K∑
k=1

γmk |wmk |2 ≤ Pc
tot,

(25b)

(25c)

(25d)

(25e)
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where χk′k and ψ2
k′k are slack variables, and [x]n represents

the nth element of vector x. Moreover, we have

zk ,

[
χ1kφφφ

H
1 φφφk, · · · , χ(k−1)kφφφ

H
k−1φφφk, χ(k+1)kφφφ

H
k+1φφφk, · · · ,

χKkφφφ
H
Kφφφk,ψ1k, · · · ,ψKk,

1
√
ρ

]
. (26)

It can be seen that (25b) represents second order cone (SOC)

[39]. Hence, Problem Prewrite
8

is a SOCP.

Therefore, the optimal solution for Problem P6 can be

derived by extracting the normalized transmit filter coefficients

uk’s and power allocations pk’s as

p∗
k
= | |w∗

k
| |2, ∀k, (27a)

u∗
k
=

w∗
k

| |w∗
k
| | , ∀k, (27b)

where w∗
k
’s are the optimal solution of Problem P7. Note

that constraint (24b) is an equivalent total power constraint

to the per-user power constraint in the original uplink max-

min SINR problem in P1, which is a more relaxed constraint

than the per-user power constraint in P1. However, it is already

shown in the previous sub-section that the same SINRs can

be realized in both the uplink and the downlink with per-

user and the equivalent total power constraints. In addition,

the SINRs achieved in the downlink problem in P7 are

optimal and therefore the SINRs achieved in Problem P1

is optimal. Next, let us again consider the uplink max-min

SINR Problems P1 and P5. After solving the uplink max-

min SINR with total power (with the maximum available

power Pc
tot =

∑K
k=1 q∗

k
defined in Problem P5), and solving

the uplink max-min SINR with per-user power constraints

(Problem P1), we observe that the obtained power allocation

for all users (qk,∀k) after solving Problem P1 and Problem

P5 are exactly the same. Moreover, after solving Problem P5

using the proposed Algorithm 1, it is observed that at least

one of the users always consumes the maximum power (i.e.,

there always exists one user with q∗
k
= p

(k)
max). However, it is

easy to prove that it is not possible to improve the max-min

rate of the system by increasing the power of other users since

in this case we would have to decrease the power of user with

q∗
k
= p

(k)
max, which decreases the rate of this user, and hence

the max-min rate. This validates the optimality of the proposed

max-min SINR scheme in Algorithm 1.

VII. SUB-OPTIMAL UPLINK MAX-MIN SINR

In this section, we revisit the bisection search based uplink

max-min SINR scheme presented in [4]. First, this bisection

scheme is summarized and then, we propose another approach

to solve this max-min SINR problem by formulating it into a

convex optimization framework. This scheme is developed by

appropriately allocating transmit powers at each user with an

matched filtering technique at the APs. However, no receiver

filter coefficient design has been considered at the CPU

to enhance the uplink rate as in the previous section. The

achievable rate of the kth user is derived in (28) (defined at

the bottom of this page), where ηk is the allocated transmit

power at user k [4]. For this scenario, the uplink max-min

Algorithm 2 Bisection search method to solve Problem P9

1. Initialize tmin, tmax and ǫ

2. Solve Problem P10, defined in (30), with t =
tmax+tmin

2

3. Repeat

4. If Problem P10 is feasible, then tmin = t

5. Else, tmax = t

6. Repeat until (tmax − tmin) ≤ ǫ

SINR problem can be formulated as the following max-min

problem:

P9 : max
ηk ≥0

min
k

RUP
k ,

s.t. 0 ≤ ηk ≤ p
(k)
max .

(29a)

(29b)

A. Bisection Search Method

In this subsection, we present the bisection search method

for this quasi-linear problem. As this problem cannot be

directly solved in this present form, a series of power min-

imization problems is solved by setting the same target rate

for all users and the corresponding target rate is modified in the

next iteration according to the feasibility or infeasibility of the

power minimization problem at each iteration. The feasibility

of the following power minimization problem is verified for

a given target SINR t at all users in each iteration of the

bisection search [4]:

P10 : min
ηk

K∑
k=1

ηk,

s.t. 0 ≤ ηk ≤ p
(k)
max, ∀ k,

ρ

K∑
k′,k

ηk′

(
M∑
m=1

γmk

βmk′

βmk

)2 ��φφφHk φφφk′ ��2 t

+ρ

K∑
k′=1

ηk′

M∑
m=1

γmk βmk′t+

M∑
m=1

γmk t ≤ ρηk

(
M∑
m=1

γmk

)2

,∀k .

(30a)

(30b)

(30c)

In this bisection search approach, first an upper and lower

bounds of the achievable SINR are set to tmax and tmin, respec-

tively and the initial target SINR t is chosen as (tmax+ tmin)/2.

If Problem P10 is feasible for a given target SINR t, then the

lower bound tmin will be set to t and a new target SINR is

chosen as (tmax + tmin)/2 for the next iteration. This procedure

is continued until the difference between the upper and the

lower bounds is smaller than a predefined threshold ǫ . This

bisection search method based uplink max-min SINR scheme

is summarized in Algorithm 2. Note that based on the analysis

in [21], the bisection search method provides the optimal

solution. In the rest of this section, we show that Problem P9

can be reformulated as a standard GP, which does not require

an iterative bisection search to find the optimal solution.

B. Proposed Sub-optimal Scheme

In this subsection, we exploit GP (convex problem) to

develop an efficient solution for Problem P9 defined in (29).

As mentioned in previous subsection, Problem P9 cannot be



8

Table I

COMPUTATIONAL COMPLEXITY OF DIFFERENT PROBLEMS

Problems Required arithmetic operations

Problem P2, given by (13) O(KM3)

Problem P4, given by (15) O(K
7
2 )

Problem P10, given by (30) log2(
tmax−tmin

ǫ
) O(K4)

Problem P11, given by (31) O(K
7
2 )

directly solved through the optimization software. Consider

the following optimization problem:

P11 : max
t ,ηk

t,

s.t. 0 ≤ ηk ≤ p
(k)
max, ∀ k,

SINRUP
k ≥ t, ∀ k .

(31a)

(31b)

(31c)

Proposition 2. Problem P11 can be reformulated into a GP.

Proof: The standard form of GP is defined in Appendix B.

The SINR constraint in (31c) can be reformulated into the

posynomial function. Following a simple transformation, the

SINR constraint in (31c) can be represented by the following

inequality:

η−1
k

(
K∑

k′,k

ekk′ηk′+

K∑
k′=1

fkk′ηk′ + rk

)
<

1

t
, (32)

where

ekk′ =

(∑M
m=1 γmk

βmk′
βmk

)2 ��φφφH
k
φφφk′

��2
(∑M

m=1 γmk

)2
,

fkk′ =

∑M
m=1 γmk βmk′(∑M
m=1 γmk

)2
,

rk =

∑M
m=1 γmk

ρ

(∑M
m=1 γmk

)2
.

(33a)

(33b)

(33c)

The transformation in (32) demonstrates that the left-hand side

of (32) is a posynomial function. Hence, Problem P11 is a

standard GP, which completes the proof of Proposition 2. �

Based on Proposition 2, the objective function and constraints

of Problem P11 are monomial and posynomials functions in

terms of power allocaitons ηks. Hence, Problem P11 is a

standard GP, and can be efficiently solved through convex

optimization software. Simulation results are provided to show

that both bisection and GP based sub-optimal schemes achieve

the same user rate for all users.

VIII. COMPLEXITY ANALYSIS

Here, we provide the computational complexity analysis for

the proposed Algorithm 1, which solves a generalized eigen-

value problem P2 and a GP (convex optimization problem) P4

at each iteration. For the receiver filter coefficient design in

P2, given by (13), an eigenvalue solver requires approximately

O(K M3) flops [40], [41]. Note that the complexity analysis of

an eigenvalue solver takes into account the matrix inversion

as well. In addition, a standard GP in Problem P4, defined

in (15), can be solved with complexity equivalent to O(K 7
2 )

[42, Chapter 10]. The proposed sub-optimal scheme in Section

VII solves a GP in Problem P11, defined in (31), which can be

solved with O(K 7
2 ) [42, Chapter 10]. However, for the scheme

in [4], the iterative bisection search method in Algorithm 2

solves a SOCP at each iteration. The complexity of SOCP is

O(K4) in each iteration [43], [44]. Note that the total number

of iterations to solve Problem P9 via a bisection search method

is given by log2( tmax−tmin

ǫ
), where ǫ refers to a predetermined

threshold [39]. The number of arithmetic operations required

for Algorithm 1, Algorithm 2, and the proposed sub-optimal

scheme are provided in Table I.

IX. PROPOSED USER ASSIGNMENT SCHEME

In practice, the total backhaul capacity required between the

mth AP and the CPU increases linearly with the total number

of users served by the mth AP, which motivates the need to

pick a proper set of active users for each AP [32]. In [32],

we proposed a user assignment algorithm which can reduce

the required capacity of backhaul link by assigning a limited

number of users to each AP, however, this paper assumes

perfect backhaul links. Hence, for simplicity we assume here

that only thm% of the total number of users can be supported

by the mth AP. Hence, we have

Km ≤
(

thm

100
× K

)
, (34)

where Km denotes the size of the set of active users for the

mth AP. First, we find an upper bound on the size of the set of

active users for each AP. In the next step, we propose for all

APs that the users are sorted according to βmk, ∀k, and find

the Km users which have the highest values of βmk among all

users. If a user is not selected by any AP, we propose to find

the AP which has the best link to this user. Then, we add the

user to the set of active users for this AP and drop the user

which has the lowest βmk, ∀k, among active users for that

AP which have links to other APs as well. We next solve the

original max-min SINR problem with γ̃mk ← γmk , where γ̃mk

is given by

γ̃mk =

{
γmk, m ∈ Sk
0, otherwise

(35)

RUP
k =

©­­«
1 +

ρηk

(∑M
m=1 γmk

)2

ρ
∑K

k′,k ηk′
(∑M

m=1 γmk
βmk′
βmk

)2 ��φφφH
k
φφφk′

��2
+ ρ

∑K
k′=1 ηk′

∑M
m=1 γmk βmk′ +

∑M
m=1 γmk

ª®®¬
. (28)
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where Sk refers to the set of active APs for the kth user. Note

that optimum user assignment scheme can be considered in

future work.

X. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical simulation results

to validate the performance of the proposed max-min SINR 
scheme with different parameters. A cell-free Massive MIMO 
system with M APs and K single-antenna users is considered

in a D × D simulation area, where both APs and users are

uniformly located at random. In the following subsections,

we define the simulation parameters and then present the 
corresponding simulation results.

A. Simulation Parameters

The channel coefficients between users and APs are mod-

eled in (1) where the coefficient βmk is given by [4]

βmk = PLmk10

σsh zmk

10 , (36)

where PLmk is the path loss from the kth user to the mth

AP and the second term in (36), 10
σsh zmk

10 , denotes the

shadow fading with standard deviation σsh = 8 dB, and

zmk ∼ N(0,1). In the simulation, an uncorrelated shadowing

model is considered and a three-slope model for the path loss

is given by [4], [45]

PLmk=



−L − 35 log10(dmk), dmk > d1,

−L −15log10(d1)−20 log10(dmk), d0< dmk ≤ d1,

−L − 15 log10(d1) − 20 log10(d0), dmk ≤ d0,

(37)

and L = 46.3 + 33.9 log10( f ) − 13.82 log10(hAP) −(
1.1 log10( f ) − 0.7

)
hk +

(
1.56 log10( f ) − 0.8

)
, where f de-

notes the carrier frequency (in MHz), hAP and hk represent the

AP antenna height (in m) and user height (in m), respectively.

The noise power is given by pn = BW × kB × T0 ×W, where

BW = 20 MHz denotes the bandwidth, kB = 1.381 × 10−23

represents the Boltzmann constant, and T0 = 290 (Kelvin)

denotes the noise temperature. Moreover, W = 9 dB, and

denotes the noise figure. It is assumed that that p̄p and

ρ̄ denote the pilot sequence and the uplink data powers,

respectively, where pp =
p̄p

pn
and ρ =

ρ̄

pn
. In simulations,

we set p̄p = 200 mW and ρ̄ = 200 mW. Similar to [4], we

assume that the simulation area is wrapped around at the edges

which can simulate an area without boundaries. Hence, the

square simulation area has eight neighbours. We evaluate the

average rate of the system over 300 random realizations of

the locations of APs, users and shadow fading. Furthermore,

to consider the channel estimation overhead in our comparison,

we exploit the net throughput of the system which is defined as

[4] Rnet,k = BW
1 − τ

τc

2
Rk, where τc represents the coherence

interval in samples.

B. Simulation Results

1) Performance of the Proposed Max-Min SINR Algorithm:

In this subsection, we evaluate the performance of the pro-

posed uplink max-min SINR scheme. To assess the perfor-

mance, a cell-free Massive MIMO system is considered with
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Figure 2. The cumulative distribution of the min uplink rate, with orthogonal

and random pilots for M = 120, K = 30 and D = 1 km2.
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Figure 3. The cumulative distribution of the min uplink rate, with orthogonal

and random pilots for M = 120, K = 30 and D = 1 km2.

120 APs (M = 120) and 30 users (K = 30) who are randomly

distributed over the simulation area of size 1 × 1 km2. Fig. 3

presents the cumulative distribution of the achievable uplink

rates for the proposed Algorithm 1 and the scheme in [4], for

the cases of orthogonal and random pilots. As seen in Fig. 3,

the performance of the proposed scheme is almost three times

than that of the scheme in [4]. Next, the performance of the

algorithm is evaluated for a system with 150 APs (M = 150)

and 50 users (K = 50)1. Fig. 4 similarly compares the rate of

the proposed algorithm with the scheme in [4]. The simulation

results in Figs. 3 and 4 show that the proposed Algorithm 1

achieves more than double the 10% outage capacity compared

to the scheme in [4]. Moreover, Figs. 3 and 4 demonstrate

that the rate of the proposed max-min SINR approach is more

concentrated around the median value.

1The analysis in [46] demonstrates that in the limit of Massive MIMO

(M , K → ∞ and α = M
K

), when α ≥ 4, linear precoding is “virtually

optimal”, and can be used instead of dirty paper coding (DPC). In this paper,

we consider the two cases α = 120
30 = 4 and α = 150

50
= 3.
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Figure 4. The cumulative distribution of the min uplink rate, with random

pilots for M = 150, K = 50 and D = 1 km2.

2) User Assignment: In this subsection, the performance of

the proposed uplink max-min SINR scheme with the proposed

user assignment scheme in Section IX is investigated. We set

120 APs (M = 120) and 30 users (K = 30), and assume

66.66% of the total number of users can be supported by

each AP. Based on the analysis in Section IX, this results

in a total number of users supported users by each AP of

Km = 20,∀m. Fig. 5 presents the cumulative distribution of

the achievable uplink rates for the proposed Algorithm 1 and

the scheme in [4] with the proposed user assignment algorithm

in Section IX, for the cases of orthogonal and random pilots.

As seen in Fig. 5, the performance of the proposed scheme

is significantly better than that of the scheme in [4]. In

addition, it can be observed from figure that the rate of the

proposed Algorithm 1 is more concentrated around the median.

Interestingly, by comparing the results in Figs. 3 and 5, the

performance degradation is negligible exploiting the proposed

user assignment scheme whereas based on the analysis in [32],

the backhaul rate is significantly reduced.

3) Performance of the Proposed Sub-optimal Scheme: In

this subsection, we study the effect of the proposed sub-

optimal scheme on the system performance. Fig. 6 com-

pares the cumulative distribution of the achievable uplink net

throughput for our proposed sub-optimal scheme with scheme

in [4]. In order to generate the numerical results for the scheme

in [4], the iterative bisection search method in Algorithm

2 is used whereas the proposed sub-optimal scheme solves

the standard GP with polynomial time complexity. In Fig.

6, the same cell-free Massive MIMO system is considered

with 120 APs (M = 120) and 30 users (K = 30). Figs.

6 and 7 compare the performance of the proposed sub-

optimal approach with the scheme in [4] for different system

parameters. As evidenced from these numerical results, both

proposed GP approach and the bisection search scheme in

[4] shows the same performance in terms of the achieved

user rate. However, the scheme in [4] is developed through

iterative bisection search in which a SOCP is solved at each

iteration, whereas the proposed GP approach does not require
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Figure 5. The cumulative distribution of the min uplink rate with proposed

user assignment scheme in Section IX, with orthogonal and random pilots for

M = 120, K = 30, Km = 20, ∀m, and D = 1 km2.
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Figure 6. The cumulative distribution of the min uplink net throughput, with

orthogonal and random pilots for M = 120, K = 30, D = 1 km2 and

τc = 200.

any iterative methods and solves the problem with polynomial

time complexity.

4) Convergence: Next, we provide simulation results to

validate the convergence of the proposed algorithm for a set

of different channel realizations. These results are generated

over the simulation area of size 1 × 1 km2 with random and

orthogonal pilot sequences. Fig. 8 investigates the convergence

of the proposed Algorithm 1 with 120 APs (M = 120) and 30

users (K = 30) and orthogonal pilot sequences, whereas Fig. 9

demonstrates the convergence of the proposed Algorithm 1 for

the case of M = 150 APs and K = 50. The figures confirm that

the proposed algorithm converges after a few iterations, while

the minimum rate of the users increases with the iteration

number.

5) Uplink-Downlink Duality in Cell-Free Massive MIMO

System: Here, the simulation results are provided to support

the theoretical derivations of the uplink-downlink duality and
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Figure 8. The convergence of the proposed max-min SINR approach

(Algorithm 1) for M = 120, K = 30 and D = 1 km with orthogonal pilots.

1 2 3 4 5

Number of iterations

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

M
in

-u
se

r 
up

lin
k 

ra
te

 (
bi

ts
/s

/H
z)

Channel 1
Channel 2
Channel 3
Channel 4

Figure 9. The convergence of the proposed max-min SINR approach

(Algorithm 1) for M = 150, K = 50, D = 1 km, and the length of the

pilot sequences is set to 30 (τ = 30).

Figure 10. The cumulative distribution of the min uplink rate for the

original problem with per-user power constraint (Problem P1), the equivalent

uplink problem with total power constraint (Problem P5), and the equivalent

downlink problem (Problem P6), with orthogonal and random pilots for

M = 120, K = 30 and D = 1 km.

Figure 11. The cumulative distribution of the min uplink rate for the

original problem with per-user power constraint (Problem P1), the equivalent

uplink problem with total power constraint (Problem P5), and the equivalent

downlink problem (Problem P6), with orthogonal and random pilots for

M = 150, K = 50 and D = 1 km.

the optimality of Algorithm 1. It is assumed that users are

randomly distributed through the simulation area of size 1× 1

km2. Figs. 10 and 11 compare the cumulative distribution of

the achievable uplink rates between the original uplink max-

min problem (Problem P1), the equivalent uplink problem

(Problem P5) and the equivalent downlink problem (Problem

P6). In Fig. 10, the minimum uplink rate is obtained for a sys-

tem with 120 APs (M = 120) and 30 users (K = 30) whereas

Fig. 11 presents the same results for 150 APs (M = 150) and

50 users (K = 50). The simulation results provided in Figs. 10

and 11 validate our result that the problem formulations P1,

P5 and P6 are equivalent and achieve the same minimum user

rate. In addition, these results support our result on the uplink-

downlink duality for cell-free Massive MIMO in Section VI
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and the proof of optimality of Algorithm 1.

XI. CONCLUSIONS

We have considered cell-free Massive MIMO which has the

potential to meet the capacity requirements of 5G. Compared

to the collocated massive MIMO, the distributed version brings

the APs much closer to the “cell edge” users, which leads to a

uniformly good service for all users. We have investigated the

uplink max-min SINR problem in cell-free Massive MIMO

systems and proposed an optimal solution to maximize the

minimum uplink user rate. To realize the solution, the original

max-min problem was divided into two sub-problems which

were iteratively solved by formulating them respectively as a

generalized eigenvalue problem and as GP. The optimality of

the proposed solution has been validated by establishing the

uplink-downlink duality for cell-free Massive MIMO systems.

Next, a novel sub-optimal scheme was developed through for-

mulating the max-min power allocation problem as a standard

GP, which efficiently and globally solves the max-min SINR

problem. Simulation results have been provided to demonstrate

the effectiveness and the optimality of the proposed schemes

in comparison with the existing schemes. In addition, these

results confirm that the proposed max-min SINR algorithm

can significantly improve the uplink user rate, compared to

existing algorithms.

APPENDIX A: PROOF OF THEOREM 1

The desired signal for user k is given by

DSk =
√
ρE

{
M∑
m=1

umk ĝ
∗
mkgmk

√
qk

}
=

√
ρqk

M∑
m=1

umkγmk .(38)

Hence,

|DSk |2 = ρqk

(
M∑
m=1

umkγmk

)2

. (39)

Moreover, the term E{|BUk |2} can be obtained as

E
{
|BUk |2

}
= ρE



�����
M∑
m=1

umk ĝ
∗
mkgmk

√
qk − ρE

{
M∑
m=1

umk ĝ
∗
mkgmk

√
qk

}�����
2


= ρ

M∑
m=1

qku2
mk

(
E

{��ĝ∗mkgmk − E
{
ĝ
∗
mkgmk

}��2})

= ρqk

M∑
m=1

u2
mkγmk βmk, (40)

where the last equality comes from the analysis in [4,

Appendix A], and using the following fact that; γmk =

E{|ĝmk |2} =
√
τppβmkcmk . The term E{|IUIkk′ |2} is derived

as

E {| IUIkk′ |2} = ρE


�����
M∑
m=1

umk ĝ
∗
mkgmk′

√
qk′

�����
2


= pE



�����
M∑
m=1

cmkumkgmk′
√

qk′

(
√
τpp

K∑
i=1

gmiφφφ
H
k φφφi+φφφ

H
k np,m

)∗�����
2


= ρ qk′E



�����
M∑
m=1

cmkumkgmk′ ñ
∗
mk

�����
2
︸                                  ︷︷                                  ︸

A

+ ρτppE




qk′

�����
M∑
m=1

cmkumkgmk′

(
K∑
i=1

gmiφφφ
H
k φφφi

)∗�����
2
︸                                                       ︷︷                                                       ︸

B

, (41)

where the third equality in (41) is due to the fact that for

two independent random variables X and Y and E{X} = 0,

we have E{|X + Y |2} = E{|X |2} + E{|Y |2} [4]. Since ñmk =

φφφH
k

np,m ∼ CN(0,1) is independent of the term gmk′ , the term

A in (41) is given immediately by

A = qk′

M∑
m=1

c2
mku2

mk βmk′ . (42)

The term B in (41) can be obtained as

B=τppqk′E



�����
M∑
m=1

cmkumk |gmk′ |2 φφφHk φφφk′
�����
2
︸                                               ︷︷                                               ︸

C

+ τppqk′E



�����
M∑
m=1

cmkumkgmk′

(
K∑

i,k′
gmiφφφ

H
k φφφi

)∗�����
2
︸                                                         ︷︷                                                         ︸

D

. (43)

The first term in (43) is given by

C = τppqk′E



�����
M∑
m=1

cmkumk |gmk′ |2 φφφHk φφφk′
�����
2


= 2τppqk′
��φφφHk φφφk′ ��2

M∑
m=1

c2
mku2

mk β
2
mk′ + τppqk′

E

{��φφφHk φφφk′ ��2
M∑
m=1

M∑
n,m

cmkcnkumkunk |gmk′|2 |gnk′|2
}

= τppqk′
��φφφHk φφφk′ ��2

M∑
m=1

c2
mku2

mk β
2
mk′

+ qk′
��φφφHk φφφk′ ��2

(
M∑
m=1

umkγmk

βmk′

βmk

)2

, (44)
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where the last equality is derived based on the fact γmk =√
τppβmkcmk . The second term in (43) can be obtained as

D=τppqk′E



�����
M∑
m=1

cmkumkgmk′

(
K∑

i,k′
gmiφφφ

H
k φφφi

)∗�����
2


= τpp

M∑
m=1

K∑
i,k′

qk′c
2
mku2

mk βmk′βmi

��φφφHk φφφi ��2. (45)

Hence, (41) can be written as

E
{
|IUIkk′ |2

}
= qk′

M∑
m=1

c2
mku2

mk βmk′

︸                   ︷︷                   ︸
C1

+ τppqk′
��φφφHk φφφk′ ��2

M∑
m=1

c2
mku2

mk β
2
mk′

+ τppqk′

M∑
m=1

K∑
i,k′

c2
mku2

mk βmk′βmi

��φφφHk φφφi ��2

qk′
��φφφHk φφφk′ ��2

(
M∑
m=1

umkγmk

βmk′

βmk

)2

, (46)

and

C2 = τppqk′
��φφφHk φφφk′ ��2

M∑
m=1

c2
mku2

mk β
2
mk′

+ τppqk′

M∑
m=1

M∑
i,k′

c2
mku2

mk βmk′βmi

��φφφHk φφφi ��2
︸                                              ︷︷                                              ︸

C3

. (47)

For the last term of (47), we have

C3 = τppqk′

M∑
m=1

K∑
i,k′

c2
mku2

mk βmk′βmi

��φφφHk φφφi ��2

= τppqk′

(
M∑
m=1

u2
mkcmk βmk′

K∑
i=1

cmk βmi

��φφφHk φφφi ��2
M∑
m=1

u2
mkc2

mk βmk′
��φφφHk φφφk′ ��2

)

=
√
τppqk′

M∑
m=1

u2
mkcmk βmk′βmk − qk′

M∑
m=1

u2
mkc2

mk βmk′

− τppqk′

M∑
m=1

u2
mkc2

mk βmk′
��φφφHk φφφk′ ��2 , (48)

where in the last step, we used equation (4). As a result, C1 +

C2 =
√
τppqk′

∑M
m=1 u2

mk
cmk βmk′βmk . Then finally we have

E
{
|IUIkk′ |2

}
= ρqk′

(
M∑
m=1

u2
mk βmk′γmk

)

+ ρqk′
��φφφHk φφφk′ ��2

(
M∑
m=1

umkγmk

βmk′

βmk

)2

. (49)

The total noise for user k is given by

E
{
|TNk |2

}
=E



�����
M∑
m=1

umk ĝ
∗
mknm

�����
2

=

M∑
m=1

u2
mkγmk, (50)

where the last equality is due to the fact that the terms ĝmk

and nm are uncorrelated. Finally, by substituting (39), (40),

(49) and (50) into (9), SINR of kth user is obtained by (10).

which completes the proof of Theorem 1. �

APPENDIX B: PROOF OF PROPOSITION 1

The standard form of GP is defined as follows [39]:

P12 : min f0(x),
s.t. fi(x) ≤ 1, i = 1, · · · ,m, gi(x) = 1, i = 1, · · · , p,

(51a)

(51b)

where f0 and fi are posynomial and gi are monomial func-

tions. Moreover, x = {x1, · · · , xn} represent the optimization

variables. The SINR constraint in (15c) is not a posynomial

function in its form, however it can be rewritten into the

following posynomial function:

u
H
k

(∑K
k′,kqk′

��φφφH
k
φφφk′

��2 ∆kk′∆Hkk′ +∑K
k′=1 qk′Dkk′+

1
ρ
Rk

)
uk

u
H
k

(
qkΓkΓ

H
k

)
uk

<
1

t
, ∀k . (52)

By applying a simple transformation, (52) is equivalent to the

following inequality:

q−1
k

(
K∑

k′,k

akk′qk′+

K∑
k′=1

bkk′qk′ + ck

)
<

1

t
, (53)

where

akk′ =
u
H
k

(��φφφH
k
φφφk′

��2∆kk′∆Hkk′) uk

u
H
k

(
ΓkΓ

H
k

)
uk

,

bkk′ =
u
H
k

Dkk′uk

u
H
k

(
ΓkΓ

H
k

)
uk

,

ck =
u
H
k

Rkuk

ρuH
k

(
ΓkΓ

H
k

)
uk

.

(54a)

(54b)

(54c)

The transformation in (53) shows that the left-hand side of

(52) is a posynomial function. Therefore, the power allocation

problem P4 is a standard GP (convex problem), where the ob-

jective function and constraints are monomial and posynomial,

respectively, which completes the proof of Proposition 1. �

APPENDIX C: PROOF OF LEMMA 1

This lemma is proven by exploiting the unique optimal

solution of uplink max-min SINR problem with total power

through an eigensystem [26]. This problem is iteratively solved

and the optimal receiver filter coefficient Ũ is determined by

solving Problem P3. Next, we scale the power allocation at

each user such that the per-user power constraints are satisfied.

Let us consider the following optimization problem for a given

receiver filter coefficient Ũ:
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P11 : CUP
k

(
Ũ,Ptot

)
= max

qk
min

k=1, · · · ,K
SINRUP

k

(
Ũ,q

)
,

subject to

K∑
k=1

qk ≤ Ptot,

(55a)

(55b)

The optimal solution of Problem P11 can be determined
by finding the unique eigenvector of an eigensystem and the

power allocation q̃ satisfies the condition
∑K

k=1 q̃k = Ptot [26].

The SINRs of all users defined in (10), can be collectively

written as

q̃
1

CUP
k

(
Ũ,Ptot

) = DΨ
(
Ũ
)

q̃ + Dσ

(
Ũ
)
, (56)

where σ

(
Ũ
)
∈ CK×1, σk (uk) =

1

ρ

M∑
m=1

ũmkγmk and D and

Ψ

(
Ũ
)

are defined as

D = diag

[
1

ũH
1

D̃1ũ1

, · · · , 1

ũH
K D̃K ũK

]
,

[
Ψ

(
Ũ
)]

kk′
=

{
ũH
k

˜̃Rkk ũk, k = k ′,

ũH
k

R̃kk′ ũk + ũH
k

˜̃Rkk′ ũk, k , k ′,
(57)

where using (10), D̃k R̃kk′ and ˜̃Rkk′ are defined as
SINRUP

k
=

qkuH
k

( D̃k︷ ︸︸ ︷
ΓkΓ

H
k

)
uk

uH
k

( ∑K
k′,k qk′ |φφφHk φφφk′ |

2
∆kk′∆

H
kk′︸                 ︷︷                 ︸

R̃kk′

+

∑K
k′=1

qk′ Dkk′︸︷︷︸
˜̃Rkk′

+

1

ρ
Rk

)
uk

. (58)

Having both sides of (56) multiplied by 1T = [1, · · · ,1]T ,

we obtain 1

CUP
k (Ũ,Ptot) =

1

Ptot

1T D̃Ψ
(
Ũ
)

q̃ +
1

Ptot

1TDσ

(
Ũ
)
,

which can be combined with (56) to define the following

eigensystem:

Λ

(
Ũ,Ptot

)
q̃ext =

1

CUP
k

(
Ũ,Ptot

) q̃ext,
[
q̃ext

]
K+1
= 1, (59)

where the extended coupling matrix Λ
(
D̃,Ptot

)
is given by

Λ

(
D̃,Ptot

)
=


DΨT

(
Ũ
)

Dσ

(
Ũ
)

1

Ptot
1TDΨT

(
Ũ
) 1

Ptot
1TDσ

(
Ũ
)

. (60)

The optimal power allocation q̃ is obtained by determining

the eigenvector corresponding to the maximum eigenvalue of

Λ

(
Ũ,Ptot

)
and scaling the last element to one as follows:

q̃ext =

[
q̃

1

]
, Λ

(
Ũ,Ptot

)
q̃ext = λmax

(
Λ

(
Ũ,Ptot

))
q̃ext. (61)

Note that the dominant eigenvector can be scaled by any
positive value to satisfy a particular condition. As such, we

further scale q̃ to satisfy the per-user power constraints as

follows:

q̃ =



q̂1

max(q̂)
.
.
.

q̂K

max(q̂)


,where q̂ =



q̃1

p
(1)
max
.
.
.

q̃K

p
(K)
max


, (62)

where first the ratios between each component of the allocated

power, q̃k,∀k, and the maximum available power, p
(k)
max,∀k,

are calculated. Then the power allocation q̃ is obtained by

dividing all components of q̃ by the maximum value among the

components of q̂, i.e., max(q̂). In the next iteration, the same

max-min problem is solved with a new total power constraint

obtained by summing up the allocated power to all users in

the previous iteration, i.e., Ptot =
∑K

k=1 q̃k . At the convergence,

the per-user power constraints are satisfied with achieving the

same uplink SINR for all users. Interestingly, if this max-

min problem is solved with the corresponding total power

constraint, then it will converge to the same optimal solution

of max-min problem with per-user power constraints. This is

due to the property that the eigensystem exploited to obtain the

power allocation in (59) has a unique positive eigenvalue and a

corresponding unique eigenvector. Therefore, Problems P1 and

P5 are equivalent and have the same optimal solution. �

APPENDIX D: PROOF OF THEOREM 3

To achieve the same SINR tuples in both the uplink and the

downlink, the following condition should be satisfied:

SINRDL
k (U,p) = SINRUP

k (U,q),∀k . (63)

By substituting uplink and downlink SINRs, in (19) and (18),

respectively, in equation (63) and summing all equations by

both sides, we have

p1

M∑
m=1

u2
m1γm1 + · · · + pK

M∑
m=1

u2
mKγmK =

K∑
k=1

qk . (64)

Therefore, this condition between the total transmit power

on the uplink and the equivalent total transmit power on

the downlink should be satisfied to realize the same SINRs

for all set of users, which completes the proof of Theorem

3. �
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