B. Amunátegui, A. Ibáñez, M. Sierra, and M. Pérez, Electrochemical energy storage for renewable energy integration: zinc-air flow batteries, J. Appl. Electrochem, vol.48, pp.627-637, 2018.

M. Bockelmann, U. Kunz, and T. Turek, Electrically rechargeable zincoxygen flow battery with high power density, Electrochem. Comm, vol.69, pp.24-27, 2016.

E. Deiss, F. Holzer, and O. Haas, Modeling of an electrically rechargeable alkaline Zn-air battery, Electrochim. Acta, vol.47, pp.3995-4010, 2002.

T. P. Dirkse and N. A. Hampson, The Zn(II)/Zn exchange reaction in KOH solution-I. exchange current density measurements using the galvanostatic method, Electrochim. Acta, vol.17, pp.135-141, 1972.

J. Dundálek, I. ?najdr, O. Libánský, J. Vrána, J. Pocedi? et al., Zinc electrodeposition from flowing alkaline zincate solutions: role of hydrogen evolution reaction, J. Power Sour, vol.372, pp.221-226, 2017.

B. Dunn, H. Kamath, and J. Tarascon, Electrical energy storage for the grid: a battery of choices, Science, vol.334, pp.928-935, 2011.

R. E. Einerhand, W. H. Visscher, and E. Barendrecht, Hydrogen production during zinc deposition from alkaline zincate solutions, J. Appl. Electrochem, vol.18, pp.799-806, 1988.

A. El-sayed, H. S. Mohran, A. El-lateef, and H. M. , Corrosion study of zinc, nickel, and zinc-nickel alloys in alkaline solutions by tafel plot and impedance techniques, Metallurg. Mater. Trans. A, vol.43, pp.619-632, 2012.

M. A. Escalante-soberanis, T. Mithrush, A. Bassam, and W. Mérida, A sensitivity analysis to determine technical and economic feasibility of energy storage systems implementation: a flow battery case study, Renew. Energy, vol.115, pp.547-557, 2018.

J. Fu, J. Zhang, X. Song, H. Zarrin, X. Tian et al., A flexible solidstate electrolyte for wide-scale integration of rechargeable zinc-air batteries, Energy Environ. Sci, vol.9, pp.663-670, 2016.

G. Garcia, E. Ventosa, and W. Schuhmann, Complete prevention of dendrite formation in Zn metal anodes by means of pulsed charging protocols, Appl. Mater. Interfaces, vol.9, pp.18691-18698, 2017.

A. Gavrilovi?-wohlmuther, A. Laskos, C. Zelger, B. Gollas, and A. H. Whitehead, Effects of electrolyte concentration, temperature, flow velocity and current density on Zn deposit morphology, J. Energy Power Eng, vol.9, pp.1019-1047, 2015.

S. Hosseini, W. Lao-atiman, S. J. Han, A. Arpornwichanop, T. Yonezawa et al., Discharge performance of zinc-air flow batteries under the effects of sodium dodecyl sulfate and pluronic F-127, Sci. Rep, vol.8, p.14909, 2018.

Y. Ito, X. Wei, D. Desai, D. Steingart, and S. Banerjee, An indicator of zinc morphology transition in flowing alkaline electrolyte, J. Power Sour, vol.211, pp.119-128, 2012.

F. Jing, C. Z. Paul, P. M. Gyu, Y. Aiping, F. Michael et al., Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives, Adv. Mater, vol.29, p.1604685, 2017.

W. Lao-atiman, T. Julaphatachote, P. Boonmongkolras, and S. Kheawhom, Printed transparent thin film Zn-MnO2 battery, J. Electrochem. Soc, vol.164, pp.859-863, 2017.

C. W. Lee, K. Sathiyanarayanan, S. W. Eom, H. S. Kim, Y. et al., Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells, J. Power Sour, vol.160, pp.161-164, 2006.

Y. Li and H. Dai, Recent advances in zinc-air batteries, Chem. Soc. Rev, vol.43, pp.5257-5275, 2014.

Y. Li, M. Gong, Y. Liang, J. Feng, J. Kim et al., Advanced zinc-air batteries based on high-performance hybrid electrocatalysts, Nat. Comm, vol.4, p.1805, 2013.

A. R. Mainar, E. Iruin, L. C. Colmenares, A. Kvasha, I. De-meatza et al., An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc, J. Energy Storage, vol.15, pp.304-328, 2018.

Z. Mao and R. E. White, Mathematical modeling of a primary zinc/air battery, J. Electrochem. Soc, vol.139, pp.1105-1113, 1992.

V. S. Muralidharan and K. S. Rajagopalan, Kinetics and mechanism of corrosion of zinc in sodium hydroxide solutions by steady-state and transient methods, J. Electroanalyt. Chem. Interfacial Electrochem, vol.94, pp.21-36, 1978.

J. Park, M. Park, G. Nam, J. Lee, and J. Cho, All-solidstate cable-type flexible zinc-air battery, Adv. Mater, vol.27, pp.1396-1401, 2015.

P. Pei, K. Wang, and Z. Ma, Technologies for extending zinc-air battery's cyclelife: a review, Appl. Energy, vol.128, pp.315-324, 2014.

V. Ravindran and V. S. Muralidharan, Cathodic processes on zinc in alkaline zincate solutions, J. Power Sour, vol.55, pp.237-241, 1995.

M. M. Saleh, J. W. Weidner, B. E. El-anadouli, and B. G. Ateya, Electrowinning of nonnoble metals with simultaneous hydrogen evolution at flow-through porous electrodes: III. time effects, J. Electrochem. Soc, vol.144, pp.922-927, 1997.

G. Savaskan, T. Huh, and J. W. Evans, Further studies of a zinc-air cell employing a packed bed anode part I: discharge, J. Appl. Electrochem, vol.22, pp.909-915, 1992.

D. Schröder and U. Krewer, Model based quantification of aircomposition impact on secondary zinc air batteries, Electrochim. Acta, vol.117, pp.541-553, 2014.

D. Schröder, V. Laue, and U. Krewer, Numerical simulation of gasdiffusion-electrodes with moving gas-liquid interface: a study on pulsecurrent operation and electrode flooding, Comput. Chem. Eng, vol.84, pp.217-225, 2016.

B. Sharifi, M. Mojtahedi, M. Goodarzi, and J. Vahdati-khaki, Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder, Hydrometallurgy, vol.99, pp.72-76, 2009.

R. Shivkumar, G. Paruthimal-kalaignan, and T. Vasudevan, Effect of additives on zinc electrodes in alkaline battery systems, J. Power Sour, vol.55, pp.53-62, 1995.

M. V. Simi?i?, K. I. Popov, and N. V. Krstaji?, An experimental study of zinc morphology in alkaline electrolyte at low direct and pulsating overpotentials, J. Electroanalyt. Chem, vol.484, pp.18-23, 2000.

S. I. Smedley and X. G. Zhang, A regenerative zinc-air fuel cell, J. Power Sour, vol.165, pp.897-904, 2007.

W. G. Sunu and D. N. Bennion, Transient and failure analyses of the porous zinc electrode: i theoretical, J. Electrochem. Soc, vol.127, 1980.

S. Suren and S. Kheawhom, Development of a high energy density flexible zinc-air battery, J. Electrochem. Soc, vol.163, 2016.

K. Wang, P. Pei, Z. Ma, H. Chen, H. Xu et al., Dendrite growth in the recharging process of zinc-air batteries, J. Mater. Chem. A, vol.3, pp.22648-22655, 2015.

K. Wang, P. Pei, Z. Ma, H. Chen, H. Xu et al., Growth of oxygen bubbles during recharge process in zinc-air battery, J. Power Sour, vol.296, pp.40-45, 2015.

K. Wang, P. Pei, Y. Wang, C. Liao, W. Wang et al., Advanced rechargeable zinc-air battery with parameter optimization, Appl. Energy, vol.225, pp.848-856, 2018.

Z. Wang, X. Meng, Z. Wu, M. , and S. , Development of flexible zinc-air battery with nanocomposite electrodes and a novel separator, J. Energy Chem, vol.26, pp.129-138, 2017.

K. Wongrujipairoj, L. Poolnapol, A. Arpornwichanop, S. Suren, and S. Kheawhom, Suppression of zinc anode corrosion for printed flexible zinc-air battery, Phys. Status Solidi B, vol.254, p.1600442, 2017.

M. Xu, D. G. Ivey, Z. Xie, and W. Qu, Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement, J. Power Sour, vol.283, pp.358-371, 2015.

S. Zhang, Status, opportunities, and challenges of electrochemical energy storage, Front. Energy Res, vol.1, p.8, 2013.

A. L. Zhu, D. P. Wilkinson, X. Zhang, Y. Xing, A. G. Rozhin et al., Zinc regeneration in rechargeable zinc-air fuel cells-a review, J. Energy Storage, vol.8, pp.35-50, 2016.