M. F. Amin, M. I. Amin, A. Y. Al-nuaimi, and K. Murase, Wirtinger Calculus Based Gradient Descent and Levenberg-Marquardt Learning Algorithms in Complex-Valued Neural Networks, Neural Information Processing, pp.550-559, 2011.

J. A. Barrachina, Complex-Valued Neural Networks (CVNN), 2019.

J. Chambers, Graphical methods for data analysis, 2018.

J. S. Dramsch and C. , Complex-Valued Neural Networks in Keras with Tensorflow, 2019.

B. Fine and G. Rosenberger, The Fundamental Theorem of Algebra, 1997.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.249-256, 2010.

R. Hänsch and O. Hellwich, Classification of polarimetric SAR data by complex valued neural networks, Proc. ISPRS Hannover Workshop, High-Resolution Earth Imag. Geospatial Inf, vol.37, 2009.

J. Heaton, Introduction to neural networks with Java, 2008.

A. Hirose, Complex-valued neural networks: The merits and their origins, pp.1237-1244, 2009.

A. Hirose, Complex-valued neural networks, vol.400, 2012.

A. Hirose, Complex-valued neural networks: Advances and applications, vol.18, 2013.

A. Hirose, F. Amin, and K. Murase, Learning Algorithms in Complex-Valued Neural Networks using Wirtinger Calculus, Complex-Valued Neural Networks: Advances and Applications, pp.75-102, 2013.

A. Hirose and S. Yoshida, Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence, IEEE Transactions on Neural Networks and learning systems, vol.23, issue.4, pp.541-551, 2012.

P. H. Hoffmann, A hitchhiker's guide to automatic differentiation, Numerical Algorithms, vol.72, issue.3, pp.775-811, 2016.

K. Hornik, M. Stinchcombe, and H. White, Multilayer Feedforward Networks Are Universal Approximators, Neural Networks, vol.2, issue.5, pp.359-366, 1989.

K. Kreutz-delgado, The complex gradient operator and the CR-calculus, 2009.

A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

P. Kulkarni and P. Joshi, Artificial intelligence: building intelligent systems, PHI Learning Pvt. Ltd, 2015.

Y. Kuroe, M. Yoshid, and T. Mori, On activation functions for complex-valued neural networks: existence of energy functions, Artificial Neural Networks and Neural Information Processing, pp.985-992, 2003.

R. Mcgill, J. W. Tukey, and W. A. Larsen, Variations of box plots, The American Statistician, vol.32, issue.1, pp.12-16, 1978.

N. Mönning and S. Manandhar, Evaluation of Complex-Valued Neural Networks on Real-Valued Classification Tasks, 2018.

E. Ollila, On the circularity of a complex random variable, IEEE Signal Processing Letters, vol.15, pp.841-844, 2008.

B. Picinbono, Second-order complex random vectors and Normal distributions, IEEE Transactions on Signal Processing, vol.44, issue.10, pp.2637-2640, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01736682

P. J. Schreier and L. L. Scharf, Statistical Signal Processing of Complex-Valued Data, 2010.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, The journal of machine learning research, vol.15, pp.1929-1958, 2014.

M. Stinchcombe and H. White, Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions, IJCNN International Joint Conference on Neural Networks, 1989.

A. J. Thomas, M. Petridis, S. D. Walters, S. M. Gheytassi, and R. E. Morgan, Two Hidden Layers Are Usually Better than One, Engineering Applications of Neural Networks, pp.279-290, 2017.

C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian et al., Deep complex networks, 2017.

W. Wirtinger, Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen, Mathematische Annalen, vol.97, issue.1, pp.357-375, 1927.

J. Zhao, M. Datcu, Z. Zhang, H. Xiong, and W. Yu, Contrastive-Regulated CNN in the Complex Domain: A Method to Learn Physical Scattering Signatures From Flexible PolSAR Images, IEEE Transactions on Geoscience and Remote Sensing, vol.57, issue.12, pp.10116-10135, 2019.