L. Suganthi and A. Samuel, Energy models for demand forecasting-a review, Renewable and Sustainable Energy Reviews, vol.16, issue.2, pp.1223-1240, 2012.

B. Yildiz, J. Bilbao, and A. Sproul, A review and analysis of regression and machine learning models on commercial building electricity load forecasting, Renewable and Sustainable Energy Reviews, vol.73, pp.1104-1122, 2017.

Y. Yoon, J. Cho, and G. Yoon, Non-constrained blood pressure monitoring using ECG and PPG for personal healthcare, Journal of Medical Systems, vol.33, issue.4, pp.261-266, 2009.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation, vol.9, issue.8, pp.1735-1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, Proc. of NIPS Workshop on Deep Learning, pp.8-13, 2014.

N. Hatami, Y. Gavet, and J. Debayle, Classification of time-series images using deep convolutional neural networks, Proc. of ICMV, pp.13-15, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01869027

Z. Wang and T. Oates, Imaging time-series to improve classification and imputation, Proc. of IJCAI, pp.25-31, 2015.

O. Sezer and A. Ozbayoglu, Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach, Applied Soft Computing, vol.70, pp.525-538, 2018.

J. Maggu, E. Chouzenoux, G. Chierchia, and A. Majumdar, Convolutional transform learning, Proc. of ICONIP, pp.162-174, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01862201

A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj et al., Forecasting stock prices from the limit order book using convolutional neural networks, Proc. of CBI, pp.24-27, 2017.

M. Gudelek, S. Boluk, and A. Ozbayoglu, A deep learning based stock trading model with 2D CNN trend detection, Proc. of SSCI, 2017.

J. Yang, M. Nguyen, P. San, X. Li, and S. Krishnaswamy, Deep convolutional neural networks on multichannel time series for human activity recognition, Proc. of IJCAI, pp.25-31, 2015.

S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, A unified deep learning framework for time-series mobile sensing data processing, Proc. of WWW, pp.351-360, 2016.

Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. Zhao, Time series classification using multi-channels deep convolutional neural networks, Proc. of WAIM, pp.16-18, 2014.

S. Löwe, P. O'connor, and B. Veeling, Putting an end to end-to-end: Gradient-isolated learning of representations, Proc. of NeurIPS, pp.8-14

A. Hannun, P. Rajpurkar, M. Haghpanahi, G. Tison, C. Bourn et al., Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network, Nature Medicine, vol.25, issue.1, p.65, 2019.

H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00643354

S. Ravishankar and Y. Bresler, Learning sparsifying transforms, IEEE Transactions on Signal Processing, vol.61, issue.5, pp.1072-1086, 2012.

L. M. Briceno-arias, G. Chierchia, E. Chouzenoux, and J. Pesquet, A random block-coordinate douglasrachford splitting method with low computational complexity for binary logistic regression, Computational Optimization and Applications, vol.72, issue.3, pp.707-726, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01672507

E. Chouzenoux, J. Pesquet, and A. Repetti, A block coordinate variable metric forward-backward algorithm, Journal of Global Optimization, vol.66, issue.3, pp.457-485, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00945918

J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, vol.146, issue.1-2, pp.459-494, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00916090

H. Attouch, J. Bolte, and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Mathematical Programming, vol.137, issue.1-2, pp.91-129, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00790042

P. Combettes and J. Pesquet, Deep neural network structures solving variational inequalities, Set-Valued and Variational Analysis, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02425025

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, Proc. of ICLR, 2015.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural networks, Proc. of NeurIPS, pp.4-9, 2017.

A. Mass, A. Hannun, and A. Ng, Rectifier nonlinearities improve neural network acoustic models, Proc. of ICML, pp.16-21, 2013.

P. Malhotra, V. Tv, L. Vig, P. Agarwal, and G. Shroff, Timenet: Pre-trained deep recurrent neural network for time series classification, Proc. of ESANN, pp.26-28, 2017.

K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff, ConvTimeNet: A pre-trained deep convolutional neural network for time series classification, Tech. Rep, 2019.