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ABSTRACT One of the key enablers of future wireless communications is constituted by massive
multiple-input multiple-output (MIMO) systems, which can improve the spectral efficiency by orders
of magnitude. In existing massive MIMO systems, however, conventional phased arrays are used for
beamforming. This method results in excessive power consumption and high hardware costs. Recently,
reconfigurable intelligent surface (RIS) has been considered as one of the revolutionary technologies to
enable energy-efficient and smart wireless communications, which is a two-dimensional structure with a
large number of passive elements. In this paper, we develop a new type of high-gain yet low-cost RIS that
bears 256 elements. The proposed RIS combines the functions of phase shift and radiation together on an
electromagnetic surface, where positive intrinsic-negative (PIN) diodes are used to realize 2-bit phase shifting
for beamforming. This radical design forms the basis for the world’s first wireless communication prototype
using RIS having 256 two-bit elements. The prototype consists of modular hardware and flexible software
that encompass the following: the hosts for parameter setting and data exchange, the universal software radio
peripherals (USRPs) for baseband and radio frequency (RF) signal processing, as well as the RIS for signal
transmission and reception. Our performance evaluation confirms the feasibility and efficiency of RISs in
wireless communications. We show that, at 2.3 GHz, the proposed RIS can achieve a 21.7 dBi antenna
gain. At the millimeter wave (mmWave) frequency, that is, 28.5 GHz, it attains a 19.1 dBi antenna gain.
Furthermore, it has been shown that the RIS-based wireless communication prototype developed is capable
of significantly reducing the power consumption.

INDEX TERMS
communication.

Massive MIMO, prototype, reconfigurable intelligent surface (RIS), wireless

I. INTRODUCTION
Massive multiple-input multiple-output (MIMO)
schemes constitute promising techniques for future wireless

The associate editor coordinating the review of this manuscript and
approving it for publication was Kezhi Wang.
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communications. By relying on a large antenna array,
massive MIMO schemes provide a substantial power
gain and improve the spectral efficiency by orders of
magnitude [1], [2]. In existing massive MIMO systems, tho-
ugh, conventional phased arrays are used for beamforming,
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and this requires hundreds of high-resolution phase shifters
and complex feeding networks [3], [4]. The high power
consumption and hardware cost of these phase shifters and
complex feeding networks limit the antenna array scale
in practical massive MIMO systems. Hence, the poten-
tial advantages of massive MIMO schemes cannot be fully
realized.

There has recently emerged a promising alternative to the
traditional phased arrays— reconfigurable intelligent surfaces
(RISs) [5]-[13]. An RIS consists of a large number of nearly
passive elements with ultra-low power consumption. Each
element is capable of electronically controlling the phase of
the incident electromagnetic waves. It does so with unnatural
properties, such as, negative refraction, perfect absorption,
and anomalous reflection [8], [12], [14]. Moreover, the spa-
tial feeding mechanism of RISs avoids the excessive power
loss caused by the bulky feeding networks of phased arrays.
Therefore, RISs significantly reduce both the power con-
sumption and hardware cost. Albeit, to ensure the antenna
gain of the conventional phased arrays, it may be necessary
to install a larger number of antenna elements.

In [15], an analog design of RIS elements using varac-
tors has been proposed to provide continuous phase shift.
However, the response time of varactors is usually large, and
the phase accuracy is far from satisfaction due to the analog
control of varactors. To this end, RISs made of low-resolution
1-bit elements have been widely investigated in the liter-
ature [16]-[23]. Among them, the current reversal mech-
anism has attracted extensive attention as a benefit of its
phase response, which is near-constant across a wide fre-
quency band [21]-[23]. However, RISs with 1-bit elements
can only provide two phase states, e.g., 0 and 7. According
to the theoretical analysis on the power loss of using general
b-bit elements in [24], 1-bit phase quantization results in
more than 3 dB antenna gain reduction due to the significant
phase errors, and this result is also validated by the experi-
ment results in [25] and [26]. To mitigate the performance
degradation caused by the 1-bit phase quantization, RISs
with multi-bit elements can also be designed, though at an
increased system complexity and hardware cost. The authors
in [24], [25] showed that an RIS with 2-bit elements strikes an
attractive tradeoff between the performance and complexity,
as it has an acceptable antenna gain erosion of about 1 dB
caused by the 2-bit phase quantization [27]. However, only
a couple of contributions may be found in the literature on
RISs with 2-bit elements [27]-[29]. Recently, a novel dual
linearly/circularly polarized RIS design with 2-bit elements
imposing a low magnitude loss has been proposed in our pre-
vious 2-page conference report [30], where we have designed
an electronically controlled RIS with 2-bit elements oper-
ating at 1.7 GHz. It is also worth mentioning that the RIS
elements in existing references can only response to single
linear polarization, while the proposed element design is
suitable for arbitrary polarization (dual linear, 45/135 linear,
or dual circular polarizations), provided a proper feeding and
transceiver system design. Hence, it can easily double the
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channel capacity without using two separate large reflectarray
apertures.

It is in this context that we aim to achieve energy-efficient
wireless communications by using RISs instead of conven-
tional phased arrays. We fabricate and measure an electron-
ically controlled RIS with 2-bit elements at 2.3 GHz and
28.5 GHz having, for the first time, 16 x 16 elements. We in
fact design the world’s first wireless communication proto-
type using an RIS having 256 2-bit elements.! It should be
noted that the authors in [9], [10] developed a programmable
metasurface-based wireless transmission prototype. In their
prototype, the metasurface is used to modulate the sig-
nals for transmission only. In the current work, though, the
RIS is used for beamforming both for transmission and
reception. As a result, the proposed RIS-based wireless
communication prototype is capable of servicing mobile
users by real-time beamforming. Specifically, the prototype
designed consists of modular hardware and flexible software
to realize the wireless transceiver functions, including the
hosts for parameter setting and data exchange, the univer-
sal software radio peripherals (USRPs) for baseband and
radio frequency (RF) signal processing, as well as the RIS
for signal transmission and reception. The USRP at the
transmitter first performs baseband signal processing, e.g.,
source coding, channel coding and orthogonal frequency
division multiplexing (OFDM) modulation. The RF signals
output by the RF chains are then transmitted via our RIS
equipped with 256 2-bit elements.> The contaminated sig-
nals are received by the receiver antenna. To then recover
the original signals, the USRP at the receiver takes charge
of both RF and baseband signal processing. Additionally,
except for the RIS-based wireless communication prototype
operating at 2.3 GHz, a prototype operating at the millimeter
wave (mmWave) frequency, i.e., 28.5 GHz, is also devel-
oped.? Our performance evaluation confirms the feasibility
and efficiency of RISs in wireless communication systems
for the first time. More specifically, it is shown thata21.7 dBi
antenna gain can be obtained by the proposed RIS at 2.3 GHz,
while at 28.5 GHz, a 19.1 dBi antenna gain can be achieved.
Furthermore, it has been shown that the RIS-based wireless
communication prototype developed significantly reduces
the power consumption, while achieving similar or better
performance in terms of effective isotropic radiated power
(EIRP), compared to conventional phased array-based wire-
less communications.

The rest of this paper is organized as follows. The basic
principles and implementation details of the RIS having 256
2-bit elements are introduced in Section II. The RIS-based
wireless communication prototype designed is described

In this paper, the RIS is deployed at the transmitter [7] for performance
evaluation, which can also be used for intelligent reflection relay [6], [7].

2In this paper, a single RF chain is considered, which can be easily
extended to multiple RF chains.

3Two videos are provided to demonstrate the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/research/research.html.
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in Section III. Section IV shows the experimental results.
Finally, we offer our conclusions in Section V.

Il. THE RIS WITH 2-BIT ELEMENTS

For high-quality antenna array design, it is crucial to accu-
rately control the aperture field, especially the phase distri-
bution for electronically forming a sharp pencil beam. The
conventional phased array utilizes a phase shifter connected
to each antenna element in the array to directly control the
element’s complex excitation with a specific phase state. The
massive number of required phase shifters gives rise to the
high power consumption and excessive hardware cost of con-
ventional phased arrays. By contrast, the proposed RIS with
2-bit elements simply employs positive intrinsic-negative
(PIN) diodes integrated in each element, which modulate
the RF currents induced in the antenna elements upon their
illumination by turning ON or OFF the PIN diodes. There-
fore, the RIS element becomes capable of re-radiating an
electromagnetic field having a specific phase state. Hence,
the desired electronic phase control capability is realized
without using conventional phase shifters.

The most essential breakthrough in the proposed RIS with
2-bit elements is its novel antenna element structure. Note
that earlier publications on RIS with 2-bit elements only
provide some conceptual element design, or the fabrication
and measurement of single element [29]. This work presents
the world’s first fully functional RIS with individual element
phase control. The designed element structure is simple,
which has only 5 PIN diodes and requires only 2 control
signals for each element. Moreover, the biasing circuit is care-
fully designed to choke the RF leakage through the bias lines,
thus reducing the magnitude insertion loss. As an outcome,
high-efficiency beamforming capability is accomplished by
the RIS with 2-bit elements in this work.

Specifically, as depicted in Fig. 1(a), each antenna element
consists of a square-shaped upper patch, a slot-loaded plane
and a ground plane. The upper patch receives and radiates
energy, while the ground plane suppresses the back radiation
and radiates through the slots in the slot-loaded plane. The
slot-loaded plane is the key component controlling the RIS’s
phase state. Its detailed structure is shown in Fig. 1(b). Posi-
tioned symmetrically are four sets of slots, into which five
PIN diodes are integrated.

Ideally, a 2-bit RIS element provides four quantized phase
states with a 90° phase increment. The PIN diode states
are appropriately combined to beneficially control the RF
current paths and the resonant lengths of the slots. This com-
bination results in tunable phase shifts for the proposed RIS
element design. Specifically, Slots 1, 2 and 3 are arranged in
a T-shaped configuration, being complemented by a dummy
Slot 4 invoked for maintaining a symmetric element structure.
The states of PIN 1 and PIN 2 are alternatively turned ON
or OFF, so that the currents induced may be reversed in the
x-direction, corresponding to a 180° phase shift. The other
3 PIN diodes are turned ON or OFF simultaneously so as
to change the resonant lengths of the slots, permitting the
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FIGURE 1. Structure of the proposed 2-bit RIS element: (a) exploded
view; (b) detailed view of the slot-loaded plane.

TABLE 1. PIN diode states for different element configurations.

Configuration | PINI/PINZ | PIN3 | PINd | PINS
T ONJ/OFF oN
2 OFF/ON
3 ONJOFF
3 OFF/ON OFF

Configuration 1 Configuration 2 Configuration 3

Configuration 4

FIGURE 2. lllustrations of the RF current paths for four different element
configurations.

attainment of an additional 90° phase shift may be realized.
Hence, a 2-bit phase resolution can be obtained, resulting in
four different phase states.

The PIN diode states of the four element configurations
are tabulated in TABLE 1, and a graphic illustration of the
RF current paths is presented in Fig. 2. It should be pointed
out that the incident and re-radiated fields of each element
are orthogonally polarized due to the change of current
directions. Thanks to the symmetric element structure,
the proposed RIS element is capable of providing the
same performance both under an x- and a y-polarized
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Bias Line 1 ’

PIN4

/r Inductor ::

Slit  Capacitor| | Bias Line ::

Bias Line 2 N

FIGURE 3. Layout of the DC bias network of the 2-bit RIS element.

TABLE 2. Simulated element performance at 2.3 GHZ.

Configuration | Phase Shift | Magnitude Response
1 —205.5° —1.1dB
2 —383.2° —1.2dB
3 —290.2° —0.8dB
4 —110.3° —0.8dB

incident wave. Hence it is suitable for both dual-linearly and
dual-circularly polarized systems.

The proposed 2-bit RIS element operates in the S band
with a center frequency of 2.3 GHz.* The element spacing is
50 mm. The upper patch has a size of 37 mm x 37 mm and itis
etched on a 1-mm thick FR4 substrate. The slot-loaded plane
is etched on another FR4 substrate, which is placed 6 mm
below the upper patch. The ground is made of an aluminum
sheet, placed 12 mm below the slot-loaded plane.

The type of the commercial PIN diode is SMP1340-040LF
from Skyworks. The ON state of the PIN diode is modeled
as a series of R = 0.8  lumped resistors and L = 780
pH inductors. The OFF state can be modeled as a series of
C = 202 fF lumped capacitors, R = 10 Q resistors and
L = 780 pH inductors. The DC bias network of the element
is depicted in Fig. 3. The five PIN diodes are divided into two
groups, which are then independently controlled by a pair of
bias lines. The forward and reverse DC voltages are +0.9 V
and —0.9 V, respectively.

Shown in Fig. 4 are the simulated phase and magnitude
performances of the proposed 2-bit RIS element for four
element configurations. TABLE 2 summarizes the exact val-
ues at 2.3 GHz. It can be observed that the four element
phase states clearly exhibit a 2-bit phase resolution with an
approximate phase increment of 90°. These states remain
very stable within the frequency band of interest ranging
from 2 GHz to 2.6 GHz. The insertion magnitude loss
is less than 1.2 dB, which slightly deteriorates at higher
frequencies above 2.5 GHz. Because of the current rever-
sal mechanism, the magnitude responses of the element
configurations 1 and 2 (or 3 and 4) are similar, while their
phase shift difference is approximately 180°. These simulated
results successfully demonstrate the electronic phase shifting

4For simplicity, we only provide details about the RIS at 2.3 GHz, since
the design philosophy at 28.5 GHz is the same.
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FIGURE 4. Simulated performances of the proposed 2-bit RIS element:
(a) phase performance; (b) magnitude performance.

FIGURE 5. Photograph of the fabricated RIS having 16 x 16 2-bit elements.

capability of the proposed 2-bit RIS element without using
phase shifters.

Fig. 5 shows the design and fabrication of the RIS bear-
ing 16 x 16 2-bit elements. The size of the surface is
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FIGURE 6. Phase shift distribution of the RIS elements for the broadside
beam. Note that 16 elements (appearing as white) are removed for wiring
the bias lines.

800 mm x 800 mm, and the distance between the primary
feed and the surface is 720 mm. Upon being illuminated by
the primary feed, these 16 x 16 elements can be dynamically
reconfigured to convert the spherical wavefront impinging
from the feed into a planar wavefront in the desired direction.
Hence, the designed RIS can produce a focused high-gain
beam that is capable of promptly switching its direction
within a two-dimensional +60° angular range. Fig. 6, as an
example, shows the phase shift distribution of the elements
for the broadside beam, where 16 elements (labeled with
white color) are removed for wiring the bias lines. For practi-
cal realization, the research team designed an FPGA-based
beamforming control board, which provides 256 DC bias
signals for individually setting the configuration of all 16 x 16
elements. We can also form a large variety of shaped beams
provided that the appropriate configurations of the elements
are determined using a phase-only synthesis process and are
then pre-loaded into the beamforming control board.

lIl. RIS-BASED WIRELESS COMMUNICATION
PROTOTYPE

The RIS-based wireless communication prototype designed
consists of modular hardware and flexible software, which
collectively realize our end-to-end wireless communication
system, including baseband signal processing, RF transmis-
sion, and so forth.

As shown in Fig. 7, the hardware structure of the RIS-based
wireless communication prototype designed consists of the
base station side, including the transmitter host, the USRP
at the transmitter and the RIS having 256 2-bit elements.
It also comprises the user side, including the receiver antenna,
the USRP at the receiver and the receiver host.

At the base station side, a graphical interface is realized
at the transmitter host. The interface is responsible for con-
trolling the parameters at the transmitter, including the carrier
frequency, transmit power, modulation and encoding modes,
and more. The signals, then, are delivered to the USRP at the
transmitter via the transmitter host. Once the signals from
the transmitter host have been received, the USRP at the
transmitter carries out the signal processing, which aims to
transform the signals into a form suitable for transmission
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FIGURE 7. The RIS-based wireless communication prototype.

Embedded

Processor

Baseband Signal Processing

FIGURE 8. The hardware modules of USRP.

in wireless channels. (Later in this section, we introduce the
detailed signal processing flow.) After that, the processed
signals are forwarded to the RIS having 256 2-bit elements.
As discussed in Section II, by adjusting the states of the
PIN diodes to control the phase for each element, a sharp
directional beam can be generated by the RIS for transmission
to the user side.

At the user side, the contaminated signals are received from
the wireless channel, which are then processed by the USRP
at the receiver. The USRP at the receiver takes charge of the
signal processing for recovering the original signals, which is
basically the inverse process of those in the USRP at the trans-
mitter. Finally, the recovered signals and the corresponding
parameters, such as the received signal power, constellation,
bit-error-rate (BER), data rates and so on, are displayed by
the graphical interface at the receiver host.

To elaborate a little further, observe in Fig. 8 that the USRP
at the transmitter consists of four modules— the embedded
processor, the high-speed FPGA processor, the digital-to-
analog (DA) module and the RF module [31]. The embedded
processor and the high-speed FPGA processor jointly carry
out the baseband signal processing. The embedded processor
handles the media access control (MAC) layer process, such
as data framing. The high-speed FPGA module handles the
physical layer signal processing, such as channel coding and
orthogonal frequency division multiplexing (OFDM) mod-
ulation. The DA module is used for the digital-to-analog
conversion (DAC) of the digital signals output by the FPGA
processor. The RF module takes care of the up-conversion
required for RF signal transmission. Similarly, the USRP at
the receiver also consists of four modules: the embedded
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FIGURE 9. Signal processing flow.

processor, the high-speed FPGA processor, the analog-to-
digital (AD) module and the RF module. The baseband signal
processing at the receiver is the inverse procedure of that at
the transmitter. The AD module is used for analog-to-digital
conversion (ADC) of the analog signals obtained by down-
conversion. Finally, the down-conversion of the received
RF signal is realized by the RF module.

In our prototype, the baseband signal processing proce-
dure follows the LTE standard relying on frequency division
duplex (FDD) [32]-[34], and is implemented by a high-speed
FPGA processor as part of the USRP with the aid of graphical
programming.

Specifically, the signal processing flow of the system is
shown in Fig. 9. The signals can be obtained from diverse data
sources, such as text, images, videos and so on. To achieve
efficient and robust wireless communications, a series of
signal precessing operations have to be carried out.

Firstly, the input signals are transferred to the encoder,
including source encoding and channel encoding. The for-
mer is performed to reduce redundancy inherent in the mul-
timedia input signals, facilitating more efficient transmis-
sion. The latter is performed to combat the channel-induced
impairments by correcting the transmission errors. After that,
bit-interleaving is applied to disperse the burst errors into ran-
dom errors, thus improving the channel coding performance,
especially for channels with memory. The interleaved bits are
then mapped to symbols according to the modulation modes,
such as phase shift keying (PSK) or quadrature amplitude
modulation (QAM). Here the different modulation modes
will result in different data rates, depending on the number
of bits/symbol.

As can be seen in Fig. 9, OFDM is adopted for
wideband transmission over dispersive channels. In this
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regard, after adding the pilots and virtual subcarriers,
the serial stream of symbols is converted serial-to-parallel
and mapped to the frequency-domain OFDM subcarriers. The
frequency-domain OFDM symbols are transformed to the
time-domain by the inverse fast fourier transform (IFFT).
After concatenating the cyclic prefix (CP), the OFDM
symbols are converted to the serially transmitted time-domain
signals. Following this, the serially transmitted signals are
forwarded to the DAC module and to the up-conversion mod-
ule, and finally are transmitted via the RIS.

The receiver basically carries out the inverse process of the
transmitter, where the synchronization signals and the pilots
are utilized for timing/frequency synchronization and channel
estimation. Finally, the estimated channel will be used for
signal detection.

The above signal processing flow is controlled by the
software system. By changing the system parameters, such
as the transmit power, coding modes, modulation modes, and
0 on, various transmission modes can be activated according
to specific scenarios and requirements.

IV. EXPERIMENTAL RESULTS

The constructed RIS with 2-bit elements is measured using
the compact anechoic chamber as shown in Fig. 10. The
chamber, measuring 20 m x 10 m x 10 m was build in
Tsinghua University. Fig. 11(a) shows the normalized mea-
sured radiation patterns of the broadside beam at the design
frequency of 2.3 GHz. A high-gain pencil beam is formed
by controlling the phase shifts of the 2-bit RIS elements.
The half-power beamwidths are 9.1° and 8.8° in the two prin-
cipal planes, respectively, and the measured sidelobe levels
are —16.7 dB and —16.4 dB. The measured antenna gains
within the frequency band of interest are plotted in Fig. 11(b).
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FIGURE 10. The compact range anechoic chamber of size 20 m x
10m x 10 m.

At 2.3 GHz, the measured gain is 21.7 dBi, which corre-
sponds to an aperture efficiency of 31.3%. The measured gain
reaches its maximum of 21.9 dBi at 2.4 GHz, and the 1-dB
gain bandwidth is 350 MHz, which is equivalent to 15.2% at
the design frequency of 2.3 GHz.

The beams scanned from 0° to 60° can be readily obtained
with the help of our beamforming control board. Plotted
in Fig. 12 are the measured radiation patterns, normal-
ized to the gain of the broadside beam. As the scanning
angle increases, the measured gain decreases and the main
beam broadens. When the scanning angle is 60°, the mea-
sured gain is 18.0 dBi, and the scanning gain reduction is
only 3.7 dB. These measured results successfully verify the
flexible wide-angle beam-scanning capability of the proposed
RIS with 2-bit elements. Note that to achieve a 21.7 dBi
antenna gain, the conventional phased array requires 64 ele-
ments. Considering the same total radiated power of 64 W,
the power consumption of the RIS is about 153 W, while
that of the conventional phased array is about 370 W. In this
case, the proposed RIS can reduce the power consumption
by 58.6%, while achieving similar performance in terms
of EIRP, compared to the conventional phased array.

Based on the proposed RIS with 2-bit elements, we con-
struct the transmitter and receiver of the RIS-based wireless
communication prototype shown in Fig. 13(a) and Fig. 13(b),
respectively. The over-the-air (OTA) test environment is
indoor, and the distance between the transmitter and receiver
is 20 meters. High-definition virtual reality (VR) video
streams captured by a stereoscopic camera is used as the data
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source in the RIS-based wireless communication prototype
for real-time demonstration.

The parameters of the test are listed as follows: 1) The
resolution of the VR camera is 3920 x 1440, and the frame
rate is 30; 2) The carrier frequency of OFDM modula-
tion is 2.3 GHz, and the number of subcarriers is 1200;
3) A variety of modulation modes are available, including
QPSK, 16QAM, 64QAM, etc, and Turbo encoding is used
in conjunction with diverse code rates. Fig. 13(c) shows the
graphical interface at the receiver side when we transmit the
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FIGURE 13. The constructed RIS-based prototype at 2.3 GHz:
(a) transmitter; (b) receiver; (c) graphical interface at the receiver side.

real-time VR video using 64 QAM symbols. In the graphi-
cal interface, the important parameters are displayed in real
time, including the received spectrum, constellation, signal
power, data rate, and so forth. We can see that the received
64 QAM symbols can be clearly separated, and our proto-
type supports the real-time transmission of high-definition
VR video. Finally, we verified that the EIRP of the RIS
with 2-bit elements-based wireless communication prototype
developed is 51.7 dBm if the transmitted power is 30 dBm.
This is a 2 dB gain over the RIS with 1-bit elements-based
wireless communication systems [26].

We also constructed, as shown in Fig. 14, an RIS-based
wireless communication prototype at 28.5 GHz. Fig. 14(a)

45920

FIGURE 14. The constructed RIS-based prototype at 28.5 GHz: (a) the RIS
operating at 28.5 GHz; (b) transmitter; (c) receiver.

shows the designed RIS operating at 28.5 GHz, the measured
gain of which is 19.1 dBi, while the transmitter and receiver
are shown in Fig. 14(b) as well as Fig. 14(c).

V. CONCLUSION

In this paper, we have proposed, constructed and mea-
sured a RIS having 256 2-bit elements. Our prototype
significantly reduced the power consumption and hardware
cost of the conventional phased arrays. We have indeed
designed the world’s first RIS-based wireless communication
prototype for supporting energy-efficient wireless communi-
cations. The prototype consists of modular hardware and flex-
ible software, encompassing the hosts for parameter setting
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and data exchange, the USRPs for baseband and RF signal
processing, as well as the RIS for signal transmission and
reception. Our experimental evaluation has demonstrated the
feasibility and efficiency of RIS in wireless communications
for the first time. The test results showed that the proposed
RIS at 2.3 GHz could obtain a 21.7 dBi antenna gain and
at 28.5 GHz, a 19.1 dBi antenna. Furthermore, it has been
shown that the proposed RIS-based wireless communication
system significantly reduced the power consumption without
degrading EIRP performance. Our prototype will find a wide
range of applications in the near future, such as wireless
communications in complex terrains (e.g., mountains, snow-
fields, deserts and offshore areas), high-speed air-to-ground
and air-to-air data transmission, deep space communication,
near-earth satellite communication, mobile hotspot coverage,
and more. Our future work will consider nano-hole lens based
RIS for mmWave and sub-THz spectrums [35], [36].
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