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Fundamental Limits of Decentralized Data Shuffling

Kai Wan, Member, IEEE, Daniela Tuninetti, Senior Member, IEEE, Mingyue Ji, Member, IEEE, Giuseppe
Caire, Fellow, IEEE, and Pablo Piantanida, Senior Member, IEEE

Abstract—Data shuffling of training data among different
computing nodes (workers) has been identified as a core element
to improve the statistical performance of modern large-scale
machine learning algorithms. Data shuffling is often considered as
one of the most significant bottlenecks in such systems due to the
heavy communication load. Under a master-worker architecture
(where a master has access to the entire dataset and only
communication between the master and the workers is allowed)
coding has been recently proved to considerably reduce the
communication load. This work considers a different communi-
cation paradigm referred to as decentralized data shuffling, where
workers are allowed to communicate with one another via a
shared link. The decentralized data shuffling problem has two
phases: workers communicate with each other during the data
shuffling phase, and then workers update their stored content
during the storage phase. The main challenge is to derive novel
converse bounds and achievable schemes for decentralized data
shuffling by considering the asymmetry of the workers’ storages
(i.e., workers are constrained to store different files in their
storages based on the problem setting), in order to characterize
the fundamental limits of this problem.

For the case of uncoded storage (i.e., each worker directly
stores a subset of bits of the dataset), this paper proposes converse
and achievable bounds (based on distributed interference align-
ment and distributed clique-covering strategies) that are within
a factor of 3/2 of one another. The proposed schemes are also
exactly optimal under the constraint of uncoded storage for either
large storage size or at most four workers in the system.

Index Terms—Decentralized Data shuffling, uncoded storage,
distributed clique covering.

I. INTRODUCTION

ECENT years have witnessed the emergence of big data
and machine learning with wide applications in both
business and consumer worlds. To cope with such a large
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size/dimension of data and the complexity of machine learning
algorithms, it is increasingly popular to use distributed com-
puting platforms such as Amazon Web Services Cloud, Google
Cloud, and Microsoft Azure services, where large-scale dis-
tributed machine learning algorithms can be implemented. The
approach of data shuffling has been identified as one of the
core elements to improve the statistical performance of modern
large-scale machine learning algorithms [1f], [2]. In particular,
data shuffling consists of re-shuffling the training data among
all computing nodes (workers) once every few iterations,
according to some given learning algorithms. However, due
to the huge communication cost, data shuffling may become
one of the main system bottlenecks.

To tackle this communication bottleneck problem, under a
master-worker setup where the master has access to the entire
dataset, coded data shuffling has been recently proposed to
significantly reduce the communication load between master
and workers [3]. However, when the whole dataset is stored
across the workers, data shuffling can be implemented in a
distributed fashion by allowing direct communication between
the workerﬂ In this way, the communication bottleneck be-
tween a master and the workers can be considerably alleviated.
This can be advantageous if the transmission capacity among
workers is much higher than that between the master and
workers, and the communication load between this two setups
are similar.

In this work, we consider such a decentralized data shuffling
framework, where workers, connected by the same communi-
cation bus (common shared link), are allowed to communi-
cateﬂ Although a master node may be present for the initial
data distribution and/or for collecting the results of the training
phase in a machine learning application, it is not involved in
the data shuffling process which is entirely managed by the
worker nodes in a distributed manner. In the following, we
will review the literature of coded data shuffling (which we
shall refer to as centralized data shuffling) and introduce the
decentralized data shuffling framework studied in this paper.

A. Centralized Data Shuffling

The coded data shuffling problem was originally proposed
in [3|] in a master-worker centralized model as illustrated in

'In practice, workers communicate with each other as described in [1].

2 Notice that putting all nodes on the same bus (typical terminology in
Compute Science) is very common and practically relevant since this is
what happens for example with Ethernet, or with the Peripheral Component
Interconnect Express (PCI Express) bus inside a multi-core computer, where
all cores share a common bus for intercommunication. The access of such
bus is regulated by some collision avoidance protocol such as Carrier Sense
Multiple Access (CSMA) [4] or Token ring [5], such that once one node
talks at a time, and all other listen. Therefore, this architecture is relevant in
practice.



Fig. ['I_E} In this setup, a master, with the access to the whole
dataset containing N data units, is connected to K = N/q
workers, where q := N/K is a positive integer. Each shuffling
epoch is divided into data shuffling and storage update phases.
In the data shuffling phase, a subset of the data units is
assigned to each worker and each worker must recover these
data units from the broadcasted packets of the master and its
own stored content from the previous epoch. In the storage
update phase, each worker must store the newly assigned data
units and, in addition, some information about other data units
that can be retrieved from the storage content and master
transmission in the current epoch. Such additional information
should be strategically designed in order to help the coded
delivery of the required data units in the following epochs.
Each worker can store up to M data units in its local storage.
If each worker directly copies some bits of the data units in
its storage, the storage update phase is said to be uncoded.
On the other hand, if the workers store functions (e.g., linear
combinations) of the data objects’ bits, the storage update is
said to be coded. The goal is, for a given (M, N, q), to find
the best two-phase strategy that minimizes the communication
load during the data shuffling phase regardless of the shuffle.

The scheme proposed in [3]] uses a random uncoded storage
(to fill users’ extra memories independently when M > q)
and a coded multicast transmission from the master to the
workers, and yields a gain of a factor of O(K) in terms of
communication load with respect to the naive scheme for
which the master simply broadcasts the missing, but required
data bits to the workers.

The centralized coded data shuffling scheme with coordi-
nated (i.e., deterministic) uncoded storage update phase was
originally proposed in [|6], [7]], in order to minimize the worst-
case communication load R among all the possible shuffles,
i.e., R is smallest possible such that any shuffle can be
realized. The proposed schemes in [[6], [7] are optimal under
the constraint of uncoded storage for the cases where there is
no extra storage for each worker (i.e., M = q) or there are
less than or equal to three workers in the systems. Inspired by
the achievable and converse bounds for the single-bottleneck-
link caching problem in [8]-[10]], the authors in [11]] then
proposed a general coded data shuffling scheme, which was
shown to be order optimal to within a factor of 2 under
the constraint of uncoded storage. Also in [11]], the authors
improved the performance of the general coded shuffling
scheme by introducing an aligned coded delivery, which was
shown to be optimal under the constraint of uncoded storage
for either M = q or M > (K — 2)q.

Recently, inspired by the improved data shuffling scheme
in [11]], the authors in [[12] proposed a linear coding scheme
based on interference alignment, which achieves the optimal
worst-case communication load under the constraint of un-
coded storage for all system parameters. In addition, under
the constraint of uncoded storage, the proposed coded data
shuffling scheme in [12] was shown to be optimal for any
shuffles (not just for the worst-case shuffles) when q = 1.

B. Decentralized Data Shuffling

An important limitation of the centralized framework is the
assumption that workers can only receive packets from the
master. Since the entire dataset is stored in a decentralized
fashion across the workers at each epoch of the distributed
learning algorithm, the master may not be needed in the data
shuffling phase if workers can communicate with each other
(e.g., [1]). In addition, the communication among workers
can be much more efficient compared to the communication
from the master node to the workers [1], e.g., the connection
between the master node and workers is via a single-ported
interface, where only one message can be passed for a given
time/frequency slot. In this paper, we propose the decentral-
ized data shuffling problem as illustrated in Fig. [Ib] where
only communications among workers are allowed during the
shuffling phase. This means that in the data shuffling phase,
each worker broadcasts well designed coded packets (i.e.,
representations of the data) based on its stored content in
the previous epoch. Workers take turn in transmitting, and
transmissions are received error-free by all other workers
through the common communication bus. The objective is to
design the data shuffling and storage update phases in order to
minimize the total communication load across all the workers
in the worst-case shuffling scenario.

Importance of decentralized data shuffling in practice: In
order to make the decentralized topology work in practice, we
need to firstly guarantee that all the data units are already
stored across the nodes so that the communication among
computing nodes is sufficient. This condition is automatically
satisfied from the definition of the decentralized data shuffling
problem. Although the decentralized coded data shuffling
incurs a larger load compared to its centralized counterpart,
in practice, we may prefer the decentralized coded shuffling
framework. This is due to the fact that the transmission
delay/latency of the data transmission in real distributed com-
puting system may depend on other system properties besides
the total communication load, and the decentralized topology
may achieve a better transmission delay/latency. This could be
due to that 1) the connection between the master node and the
worker clusters is normally via a single-ported interference,
where only one message can be transmitted per time/frequency
slot [[1]]; 2) computing nodes are normally connected (e.g., via
grid, or ring topologies) and the link bandwidth is generally
much faster, in addition, computing nodes can transmit in
parallel.

C. Relation to Device-to-device (D2D) Caching and Dis-
tributed Computing

The coded decentralized data shuffling problem considered
in this paper is related to the coded device-to-device (D2D)
caching problem [13|] and the coded distributed computing
problem [14] — see also Remark [I] next.

The coded caching problem was originally proposed in [J]
for a shared-link broadcast model. The authors in [13] ex-
tended the coded caching model to the case of D2D networks
under the so-called protocol model. By choosing the com-
munication radius of the protocol model such that each node
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Fig. 1: The system models of the 3-worker centralized and
decentralized data shuffling problems in time slot ¢. The data units
in A%, are assigned to worker k, where k € {1,2,3} at time ¢.

can broadcast messages to all other nodes in the network,
the delivery phase of D2D coded caching is resemblant (as
far as the topology of communication between the nodes is
concerned) to the shuffling phase of our decentralized data
shuffling problem.

Recently, the scheme for coded D2D caching in [13]
has been extended to the coded distributed computing prob-
lem [[14]], which consists of two stages named Map and
Reduce. In the Map stage, workers compute a fraction of
intermediate computation values using local input data ac-
cording to the designed Map functions. In the Reduce stage,

according to the designed Reduce functions, workers exchange
among each other a set of well designed (coded) intermediate
computation values, in order to compute the final output
results. The coded distributed computing problem can be seen
as a coded D2D caching problem under the constraint of
uncoded and symmetric cache placement, where the symmetry
means that each worker uses the same cache function for
each file. A converse bound was proposed in [14] to show
that the proposed coded distributed computing scheme is
optimal in terms of communication load. This coded dis-
tributed computing framework was extended to cases such
as computing only necessary intermediate values [15[], [16],
reducing file partitions and number of output functions [16],
[17], and considering random network topologies [|18]], random
connection graphs [19], [20], stragglers [21]], storage cost [22],
and heterogeneous computing power, function assignment and
storage space [23], [24].

Compared to coded D2D caching and coded distributed
computing, the decentralized data shuffling problem differs
as follows. On the one hand, an asymmetric constraint on the
stored contents for the workers is present (because each worker
must store all bits of each assigned data unit in the previous
epoch, which breaks the symmetry of the stored contents
across data units of the other settings). On the other hand, each
worker also needs to dynamically update its storage based on
the received packets and its own stored content in the previous
epoch. Therefore the decentralized data shuffling problem over
multiple data assignment epochs is indeed a dynamic system
where the evolution across the epochs of the node stored
content plays a key role, while in the other problems reviewed
above the cache content is static and determined at a single
initial placement setup phase.

D. Relation to Centralized, Distributed, and Embedded Index
Codings

In a distributed index coding problem [25], [26]], there are
multiple senders connected to several receivers, where each
sender or receiver can access to a subset of messages in the
library. Each receiver demands one message and according
to the users’ demands and side informations, the senders
cooperatively broadcast packets to all users to satisfy the
users’ demands. The difference in a centralized index coding
problem [27]] compared to the distributed one is that only one
sender exists and this sender can access the whole library.
Very recently, the authors in [28] considered a special case
of distributed index coding, referred to as embedded index
coding, where each node acts as both a sender and a receiver
in the system. It was shown in [28]] that a linear code for
this embedded index coding problem can be obtained from a
linear index code for the centralized version of the problem
by doubling the communication load.

The centralized and decentralized data shuffling phases
with uncoded storage are special cases of centralized and
embedded index coding problems, respectively. By using the
construction in [28] we could thus design a code for the
decentralized data shuffling problem by using the optimal
(linear) code for the centralized case [12]; this would give



a decentralized data shuffling scheme with a load twice that
of [12]. It will be clarified later (in Remark 2) that the proposed
decentralized data shuffling schemes are strictly better than the
those derived with the construction in [28|]. This is so because
the construction in [28] is general, while our design is for the
specific topology considered.

E. Contributions

In this paper, we study the decentralized data shuffling prob-
lem, for which we propose converse and achievable bounds as
follows.

1) Novel converse bound under the constraint of uncoded
storage. Inspired by the induction method in [14, Thm.1]
for the distributed computing problem, we derive a
converse bound under the constraint of uncoded storage.
Different from the converse bound for the distributed
computing problem, in our proof we propose a novel
approach to account for the additional constraint on the
“asymmetric” stored content.

2) Scheme A: General scheme for any M. By extending the
general centralized data shuffling scheme from [[11] to
our decentralized model, we propose a general decen-
tralized data shuffling scheme, where the analysis holds
for any system parameters.

3) Scheme B: Improved scheme for M > (K — 2)q. It can

be seen later that Scheme A does not fully leverage
the workers’ stored content. With the storage update
phase inspired by the converse bound and also used in
the improved centralized data shuffling scheme in [11]],
we propose a two-step scheme for decentralized data
shuffling to improve on Scheme A. In the first step we
generate multicast messages as in [8]], and in the second
step we encode these multicast messages by a linear
code based on distributed interference alignment (see
Remark [3).
By comparing our proposed converse bound and
Scheme B, we prove that Scheme B is exactly optimal
under the constraint of uncoded storage for M > (K —
2)q. Based on this result, we can also characterize the
exact optimality under the constraint of uncoded storage
when the number of workers satisfies K < 4.

4) Scheme C: Improved scheme for M = 2q. The delivery
schemes proposed in [8], [[11]], [13]] for coded caching
with a shared-link, D2D caching, and centralized data
shuffling, all belong to the class of clique-covering
method from a graph theoretic viewpoint. By a non-
trivial extension from a distributed clique-covering ap-
proach for the two-sender distributed index coding prob-
lems [29] to our decentralized data shuffling problem for
the case M = 2q, we propose a novel decentralized data
shuffling scheme. The resulting scheme outperforms the
previous two schemes for this specific storage size.

5) Order optimality under the constraint of uncoded stor-
age. By combing the three proposed schemes and com-
paring with the proposed converse bound, we prove the
order optimality of the combined scheme within a factor
of 3/2 under the constraint of uncoded storage.

FE. Paper Organization

The rest of the paper is organized as follows. The system
model and problem formulation for the decentralized data
shuffling problem are given in Section Results from de-
centralized data shuffling related to our work are compiled in
Section Our main results are summarized in Section
The proof of the proposed converse bound can be found
in Section [V] while the analysis of the proposed achievable
schemes is in Section[V1} Section[VII|concludes the paper. The
proofs of some auxiliary results can be found in the Appendix.

G. Notation Convention

We use the following notation convention. Calligraphic
symbols denote sets, bold symbols denote vectors, and sans-

serif symbols denote system parameters. We use | - | to
represent the cardinality of a set or the length of a vector;
[@ : b := {a,a+1,...,b} and [n] := {1,2,....,n}; &

represents bit-wise XOR; N denotes the set of all positive
integers.

II. SYSTEM MODEL

The (K,q, M) decentralized data shuffling problem illus-
trated in Fig. is defined as follows. There are K € N
workers, each of which is charged to process and store q € N
data units from a dataset of N := Kq data units. Data units
are denoted as (Fy, Fs, ..., Fy) and each data unit is a binary
vector containing B i.i.d. bits. Each worker has a local storage
of MB bits, where ¢ < M < Kgq = N. The workers are
interconnected through a noiseless multicast network.

The computation process occurs over T time slots/epochs.
At the end of time slot ¢t — 1, ¢ € [T], the content of the local
storage of worker k € [K] is denoted by Z,i_l; the content of
all storages is denoted by Z¢~1 := (Zi=t ZI=t .. Zf{l).
At the beginning of time slot ¢ € [T], the N data units are
partitioned into K disjoint batches, each containing q data
units. The data units indexed by A% C [N] are assigned to
worker k& € [K] who must store them in its local storage by the
end of time slot ¢t € [T]. The dataset partition (i.e., data shuffle)

in time slot ¢ € [T] is denoted by A" = (A}, AL, ... AL) and
must satisfy
ALl =a, vk € [K], (1a)

(1b)
(1o

21 ﬂAzz = @, V(kl,k‘g) S [K]2 : k?l 75 kg,
UkelK] Al = [N] (dataset partition).

If =1, we let A}, = {d}} for each k € [K].
We denote the worker who must store data unit F; at the
end of time slot ¢ by uﬁ, where

u! =k if and only if i € A. )

The following two-phase scheme allows workers to store
the requested data units.



Initialization: We first focus on the initial time slot ¢t =
0, where a master node broadcasts to all the workers. Given
partition A°, worker k € [K] must store all the data units F;
where i € A?; if there is excess storage, that is, if M > q,
worker k € [K] can store in its local storage parts of the data
units indexed by [N] \ A?. The storage function for worker
k € [K] in time slot ¢ = 0 is denoted by 2, where

ZY =) (.AO, (F;:1 € N)) (initial storage placement) :
(3a)

H (Z,g) < MB, Vk € [K] (initial storage size constraint),
(3b)

H ((Fl RS Ag) |Z,g> =0 (initial storage content constraint).

(30

Notice that the storage initialization and the storage update
phase (which will be described later) are without knowledge
of later shuffles. In subsequent time slots ¢ € [T], the master
is not needed and the workers communicate with one another.
Data Shuffling Phase: Given global knowledge of the
stored content Z*~1 at all workers, and of the data shuffle
from A*~! to A’ (indicated as A1 — A") worker k € [K]
broadcasts a message X/, to all other workers, where X} is
based only on the its local storage content Z,i_l, that is,

H(X,Q|Z,g—1) —0 (encoding). &)

The collection of all sent messages is denoted by X! :=
(X1, X5, ..., Xk). Each worker k € [K] must recover all data
units indexed by A} from the sent messages X* and its local
storage content Z,ifl, that is,

H((Fi i€ A;)|Z,§—1,Xt) —0 (decoding).  (5)
The rate K-tuple (RA™ A", RA™' =A%) is said to be
feasible if there exist delivery functions ¢ : X}, = ¢L(Zi 1)
for all ¢ € [T] and k € [K] satisfying the constraints (@)
and (5)), and such that

H(X,f;) <BRA A (load). (6)

Storage Update Phase: After the data shuffling phase in
time slot ¢, we have the storage update phase in time slot
t € [T]. Each worker k € [K] must update its local storage
based on the sent messages X® and its local stored content
Zi~1, that is,

H(Z};|Z,Z_1, Xt) =0 (storage update), @)
by placing in it all the recovered data units, that is,
H((FZ = A};)|Z,i) =0, (stored content).  (8)
Moreover, the local storage has limited size bounded by
H(Z,i) < MB, Vk € [K], (storage size). )

A storage update for worker k£ € [K] is said to be feasible
if there exist functions ¥ : Z = i (AL, Zi~", X?) for all

t € [T] and k € [K] satisfying the constraints in (7), (8) and
©).

Note: if for any ki,ks € [K] and t1,t2 € [T] we have
Ul =W (ie, ¥)! is equivalent to W2 ), the storage phase
is called structural invariant.

Objective: The objective is to minimize the worst-case
total communication load, or just load for short in the follow-
ing, among all possible consecutive data shuffles, that is we
aim to characterized R* defined as

R* := lim min max max E thil_mt:
Tooo ! ! (A,...,AT) | te[T]
k Pk ke[K]
t'e[T],ke[K]

the rate K-tuple and the storage are feasible}. (10)

The minimum load under the constraint of uncoded storage
is denoted by R}. In general, R}, > R*, because the set of
all general data shuffling schemes is a superset of all data
shuffling schemes with uncoded storage.

Remark 1 (Decentralized Data Shuffling vs D2D Caching).
The D2D caching problem studied in [|13|] differs from our
setting as follows:

1) in the decentralized data shuffling problem one has the
constraint on the stored content in (8) that imposes that
each worker stores the whole requested files, which is
not present in the D2D caching problem; and

2) in the D2D caching problem each worker fills its local
cache by accessing the whole library of files, while in
the decentralized data shuffling problem each worker
updates its local storage based on the received packets
in the current time slot and its stored content in the
previous time slot as in ().

Because of these differences, achievable and converse bounds
for the decentralized data shuffling problem can not be ob-
tained by trivial renaming of variables in the D2D caching

problem.
a

III. RELEVANT RESULTS FOR CENTRALIZED DATA
SHUFFLING

Data shuffling was originally proposed in [3|] for the central-
ized scenario, where communications only exists between the
master and the workers, that is, the K decentralized encoding
conditions in (@) are replaced by H(X'|Fy,...,Fn) = 0
where X! is broadcasted by the master to all the workers.
We summarize next some key results from [11]], which will
be used in the following sections. We shall use the subscripts
“u,cen,conv” and “u,cen,ach” for converse (conv) and achiev-
able (ach) bounds, respectively, for the centralized problem
(cen) with uncoded storage (u). We have

1) Converse for centralized data shuffling: For a (K, q, M)

centralized data shuffling system, the worst-case com-
munication load under the constraint of uncoded storage
is lower bounded by the lower convex envelope of the
following storage-load pairs [[11, Thm.2]

M R K-
<=m, =m> ,Vme K. (1)
q q m u,cen,conv



2) Achievability for centralized data shuffling: In [11] it
was also shown that the lower convex envelope of the
following storage-load pairs is achievable with uncoded
storage [[11, Thm.1]

(M_1+ K-1 R_K-g
- gK’qig+1

12)

The achievable bound in was shown to be within a
factor % < 2 of the converse bound in (TT)) under the
constraint of uncoded storage [11, Thm.3].

3) Optimality for centralized data shuffling: It was shown
in [12] Thm.4] that the converse bound in (TI)) can be
achieved by a scheme that uses linear network coding
and interference alignement/elimination. An optimality
result similar to [12, Thm.4] was shown in [11, Thm.4],
but only for m € {1, K —2,K —1}; note that m = K is
trivial.

Although the scheme that achieves the load in is not
optimal in general, we shall next describe its inner workings as
we will generalize it to the case of decentralized data shuffling.

Structural Invariant Data Partitioning and Storage: Fix
g € [0 : K] and divide each data unit into (';) non-overlapping

and equal-length sub-blocks of length B/ (';) bits. Let each
data unit be F; = (G : W C [K] : (W] = g), Vi € [N].
The storage of worker k € [K] at the end of time slot ¢ is as
followsE]

Zj

- ((GZ,W YW, Vi€ AL U (Grw k€ W, ¥i € [N]\ AL)

required data units other data units

(13)
- ((Gi,w k@ W, Vi€ ALY U(Giy k€ W, Vi € [N])).

variable part of the storage

fixed part of the storage

(14)

Worker k € [K] stores all the (;) sub-blocks of the required q

data units indexed by A%, and also (';j) sub-blocks of each
data unit indexed by [N] \ A% (see ([3)), thus the required
storage space is
K—1
_ K-1
M=q+(N-q) (“EK;) = <1+97K )q-
9

It can be seen (see and also Table [I) that the storage of
worker k € [K] at time ¢ € [T] is partitioned in two parts: (i)
the “fixed part” contains all the sub-blocks of all data points
that have the index k in the second subscript; this part of the
storage will not be changed over time; and (ii) the “variable
part” contains all the sub-blocks of all required data points at
time ¢ that do not have the index k in the second subscript;
this part of the storage will be updated over time.

15)

3 Notice that here each sub-block G; yy is stored by workers {uf} UW. In
addition, later in our proofs of the converse bound and proposed achievable
schemes for decentralized data shuffling, the notation F; 1y denotes the sub-
block of Fj, which is stored by workers in W.

> , Yge[0:K].
u,cen,ach

Initialization (for the achievable bound in (12)): The
master directly transmits all data units. The storage is as in (I4)
given A°.

Data Shuffling Phase of time slot t € [T] (for the
achievable bound in (12)): After the end of storage update
phase at time ¢ — 1, the new assignment A" is revealed. For
notation convenience, let

o = (Gi,w i1 € AZ\AZ—l),

for all k € [K] and all W C [K], where [W| =g and k ¢ W.
Note that in (I6) we have \G§€7W| < B(E—), with equality (i.e.,

(16)

9
worst-case scenario) if and only if A% N.AL! = 0. To allow
the workers to recover their missing sub-blocks, the central
server broadcasts X! defined as

X'=Wz:JCK:|Tl=g+1),
Where ij :@kEJG;c,j\{k)}’

a7
(18)

where in the multicast message W/ in (T8) the sub-blocks
G,y involved in the sum are zero-padded to meet the length
of the longest one. Since worker &k € J requests G;c, T\{k}
and has stored all the remaining sub-blocks in W} defined
in (T8), it can recover G;’ T\ from W}, and thus all its
missing sub-blocks from X*.

Storage Update Phase of time slot t € [T] (for the
achievable bound in (12))): Worker k € [K] evicts from the
(variable part of its) storage the sub-blocks (G, : k &
W,Vi € Ai7'\ AL) and replaces them with the sub-blocks
(Giw : k € W,Vi € AL\ A1), This procedure maintains
the structural invariant storage structure of the storage in (14).

Performance Analysis (for the achievable bound in (12))):
The total worst-case communication load satisfies

(~KH) K—-g
R<q-%-=a—,
(g) g+1

with equality (i.e., worst-case scenario) if and only if AL N
A=t = for all k € [K].

19)

IV. MAIN RESULTS

In this section, we summarize our main results for the
decentralized data shuffling problem. We shall use the sub-
scripts “u,dec,conv” and “u,dec,ach” for converse (conv) and
achievable (ach) bounds, respectively, for the decentralized
problem (dec) with uncoded storage (u). We have:

1) Converse: We start with a converse bound for the

decentralized data shuffling problem under the constraint
of uncoded storage.
Theorem 1 (Converse). For a (K,q, M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage is lower bounded by the
lower convex envelope of the following storage-load
pairs

M R K- K
(ZTTL,: d ) ava[K]
q q m K-1 u,dec,conv
(20)



TABLE I: Example of file partitioning and storage in (T4) at the end of time slot ¢ for the decentralized data shuffling
problem with (K, q,M) = (3,1,7/3) and A" = (3,1,2) where g = 2.

2)

[ Workers [ Sub-blocks of F} [

Sub-blocks of F5

[ Sub-blocks of F3 ]

Worker 1 stores G1,11,2)> Giq1.3)

G (1,21, G213}

G3.11,21> G3.01.3)> G3.02.3)

Worker 2 stores GL{LQ}, G17{1,3}, G1,{2,3}

G (1.2},

G2 {23} Gs. (1.2} Gs (2.3}

Worker 3 stores

G1.{1.3} G123}

G (1.2 Ga 13y Ga.q2.3)

Gs.{1.3} Gs.{2.3}

Notice that the proposed converse bound is a piecewise
linear curve with the corner points in 20) and these
corner points are successively convex.

The proof of Theorem [I] can be found in Section [V] and
is inspired by the induction method proposed in [14,
Thm. 1] for the distributed computing problem. However,
there are two main differences in our proof compared
to (14, Thm.1]: (i) we need to account for the additional
constraint on the stored content in (8], (ii) our storage
update phase is by problem definition in (8) asymmetric
across data units, while it is symmetric in the distributed
computing problem.

Achievability: We next extend the centralized data shuf-
fling scheme in Section [III| to our decentralized setting.
Theorem 2 (Scheme A). For a (K,q, M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage is upper bounded by the
lower convex envelope of the following storage-load
pairs

M K-1R K-
(=1+g == g) Vg e[K—1].
a K q g u,dec,ach
@2y
M R
and (smallest storage) < =1,-= K) ,
q q u,dec,ach
(22)
M R
and (largest storage) < =K, — = 0) .
q q u,dec,ach
(23)

The proof is given in Section

A limitation of Scheme A in Theorem [2] is that, in time
slot ¢ € [T] worker k& € [K] does not fully leverage
all its stored content. We overcome this limitation by
developing Scheme B described in Section

Theorem 3 (Scheme B). For a (K,q, M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage for M > (K—2)q is upper
bounded by the lower convex envelope of the following
storage-load pairs

(M R K—-m K >
—=m,—- =" 9
q q m K-1 u,dec,ach

vm e {K—2,K—1,K}. 24)

We note that Scheme B is neither a direct extension
of [11, Thm.4] nor of [12, Thm.4] from the centralized
to the decentralized setting. As it will become clear from
the details in Section |VI-B| our scheme works with a
rather simple way to generate the multicast messages

3)

transmitted by the workers, and it applies to any shuffle,
not just to the worst-case one. In Remark ] we also
extend this scheme for the general storage size regime.

Scheme B in Theorem [3| uses a distributed clique-
covering method to generate multicast messages similar
to what is done for D2D caching [8]], where distributed
clique cover is for the side information graph (more
details in Section [V-A). Each multicast message corre-
sponds to one distributed clique and includes one linear
combination of all nodes in this clique. However, due
to the asymmetry of the decentralized data shuffling
problem (not present in D2D coded caching), the lengths
of most distributed cliques are small and thus the multi-
cast messages based on cliques and sent by a worker
in general include only a small number of messages
(i.e., small multicast gain). To overcome this limitation,
the key idea of Scheme C for M/q = 2 (described in
Section [VI-C) is to augment some of the cliques and
send them in M/q = 2 linear combinations.

Theorem 4 (Scheme C). For a (K, q, M) decentralized
data shuffling system, the worst-case load under the

constraint of uncoded storage for M/q = 2 is upper
bounded by

<M_2 R 2K(K—2))
q ' q 3<K - 1) u,dec,ach -

It will be seen later that the proposed schemes only use
binary codes, and only XOR operations are needed for
the decoding procedure.

Finally, we combine the proposed three schemes (by
considering the one among Schemes A, B or C that
attains the lowest load for each storage size).
Corollary 1 (Combined Scheme). For a (K,q, M) de-
centralized data shuffling system, the achieved storage-
load tradeoff of the combined scheme is the lower convex
envelope of the corner points is as follows:

(25)

e M = q. With Scheme A, the worst-case load is
Kem _K_
q m K-1°
e M = 2q. With Scheme C, the worst-case load is
Kem K 4
m K-13"

o« M = (14 g5t)q where g € [2 : K — 3]. With
Scheme A, the worst-case load is q%.

e M = mq where m € [K =2 : K|. With Scheme B,
the worst-case load is qK*Tm%

Optimality: By comparing our achievable and converse

bounds, we have the following exact optimality results.

Theorem 5 (Exact Optimality for M/q > K — 2).
For a (K,q, M) decentralized data shuffling system, the



optimal worst-case load under the constraint of uncoded
storage for M/q € [K—2,K] is given in Theoremand
is attained by Scheme B in Theorem

Note that the converse bound on the load for the
case M/q = 1 is trivially achieved by Scheme A in
Theorem 21

From Theorem [5 we can immediately conclude the
following.

Corollary 2 (Exact Optimality for K < 4). For a
(K, g, M) decentralized data shuffling system, the op-
timal worst-case load under the constraint of uncoded
storage is given by Theorem [I| for K < 4.

Finally, by combining the three proposed achievable
schemes, we have the following order optimality result

proved in Section

Theorem 6 (Order Optimality for K > 4). For a
(K, q, M) decentralized data shuffling system under the
constraint of uncoded storage, for the cases not covered
by Theorem | the combined scheme in Corollary [I|
achieves the converse bound in Theorem[I| within a fac-
tor of 3/2. More precisely, when mq < M < (m + 1)q,
the multiplicative gap between the achievable load in
Corollary |l| and the converse bound in Theorem || is
upper bounded by

o 4/3, ifm=1;
e 1L 4+1 ifm=2
e l— g+ ifme3: K3

e Lifme{K—-2K-1}

4) Finally, by directly comparing the minimum load for
the centralized data shuffling system (the master-worker
framework) in with the load achieved by the
combined scheme in Corollary [I] we can quantify the
communication cost of peer-to-peer operations (i.e., the
multiplicative gap on the minimum worst-case load
under the constraint of uncoded storage between decen-
tralized and centralized data shufflings), which will be

proved in Section
Corollary 3. For a (K,q,M) decentralized data shuf-
fling system under the constraint of uncoded storage,
the communication cost of peer-to-peer operations is no
more than a factor of 2. More precisely, when K < 4,
this cost is % when K > 5 and mq < M < (m+1)q,
this cost is upper bounded by

. % ifm=1;

o 1 + 2(}(7"(71)’ lf m = 2,‘

° l+m, l.me[glK—S];

o B ifme{K-2,K-1}

Remark 2 (Comparison to the direct extension from [28]]). As
mentioned in Section the result in [28] guarantees that
from the optimal (linear) centralized data shuffling scheme
in [[12|] one can derive a