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An Index Coding Approach to Caching
with Uncoded Cache Placement
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Abstract—Caching is an efficient way to reduce network traffic
congestion during peak hours, by storing some content at the
user’s local cache memory, even without knowledge of user’s
later demands. Maddah-Ali and Niesen proposed a two-phase
(placement phase and delivery phase) coded caching strategy
for broadcast channels with cache-aided users. This paper in-
vestigates the same model under the constraint that content is
placed uncoded within the caches, that is, when bits of the files
are simply copied within the caches. When the cache contents
are uncoded and the users’ demands are revealed, the caching
problem can be connected to an index coding problem. This
paper focuses on deriving fundamental performance limits for
the caching problem by using tools for the index coding problem
that were either known or are newly developed in this work.

First, a converse bound for the caching problem under the
constraint of uncoded cache placement is proposed based on
the “acyclic index coding converse bound.” This converse bound
is proved to be achievable by the Maddah-Ali and Niesen’s
scheme when the number of files is not less than the number
of users, and by a newly derived index coding achievable scheme
otherwise. The proposed index coding achievable scheme is
based on distributed source coding and strictly improves on the
widely used “composite (index) coding” achievable bound and its
improvements, and is of independent interest.

An important consequence of the findings of this paper is that
advancements on the coded caching problem posed by Maddah-
Ali and Niesen are thus only possible by considering strategies
with coded placement phase. A recent work by Yu et al has
however shown that coded cache placement can at most half the
network load compared to the results presented in this paper.

Index Terms—Coded caching; uncoded cache placement; index
coding; distributed source coding.
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I. INTRODUCTION

NETWORKS have “rush hours,” with peak traffic hours
where traffic is high and the network performance suf-

fers, and off-peak times, where traffic is low. Caching is
an effective method to smooth out network traffic during
peak times. In cache-aided networks, some content is locally
stored into the users’ local cache memory during off-peak
hours in the hope that the pre-stored content will be required
during peak hours. When this happens, content is retrieved
locally thereby reducing the communication load, or number
of transmissions, from the server to the users.

In this paper, we study the fundamental performance limits
of cache-aided broadcast systems (also known as single bot-
tleneck shared-link model) by following the model originally
proposed by Maddah-Ali and Niesen (MAN) in their seminar
works [1], [2]. We focus on the practically relevant case when
content is stored uncoded in the local caches, in which case
the caching problem can be related to the Index Coding (IC)
problem. Although the connection between caching and IC
is well known [1], [3], to the best of our knowledge, IC
results have not been used to characterize the performance
of the caching problem in the literature prior to our first
work [4], which was publicly available online since November
2015. This paper’s main contribution is to leverage both
known and hereby newly derived results for the IC problem to
determine the fundamental limits of cache-aided systems with
uncoded cache placement. Since the publication of our work,
a significant body of work on cache-aided systems has focused
on characterizing the ultimate performance limits of caching
schemes under the constraint of uncoded cache placement
as we did in [4], [5]. A non-exhaustive list of such works
includes Device-to-Device systems [6], coded caching systems
with heterogeneous cache sizes [7], topological coded caching
systems [8], coded caching systems with shared caches [9],
coded data shuffling [10], etc.

A. Past Work

MAN’s work: In [1], Maddah-Ali and Niesen proposed a
coded caching scheme that utilizes an uncoded combinatorial
cache construction in the placement phase and a binary linear
network code in the delivery phase, where content in the
caches is stored in a coordinated manner. The key observation
is that well designed packets in the delivery phase are able
to simultaneously satisfy many users at once, thus providing
a “global caching gain” that scales with the total cache size
in the network, in addition to the well known “local caching
gain” that only depends on the amount of local cache at each
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user. In [1], Maddah-Ali and Niesen analytically showed that
the load of their proposed scheme is to within a factor of 12
of a cut-set-type converse bound, but it was noted in [11] that
it numerically appeared to be optimal to within a factor 4.7.
The scheme in [1] has been improved in many ways; examples
of schemes with uncoded cache placement are [4], [5], [12],
[13], while with coded cache placement are [14]–[18].

Converse bounds for any cache placement: In [19]–[23],
converse bounds tighter than cut-set bound provided in [1]
and valid for any type of cache placement were proposed.
An improved converse bound compared to the cut-set bound
was given in [20, Theorem 1], which was used to show that
the effectiveness of caching becomes small when the number
of files becomes comparable to the square of the number of
users. An algorithm that generalizes [20] was proposed in [19]
to generate lower bounds on αR + βM , for positive integers
(α, β) and where R is the load and M the cache size, and
used to show that the achievable load in [1] is optimal to
within a factor 4. Another converse bound was obtained in [21]
by leveraging [24, Theorem 17.6.1] as a ‘symmetrization
argument’ over demands and used to show that the achievable
load in [1] is optimal to within a factor 8; the converse bound
applies to the case where users can request multiple files from
the server as well. Inspired by converse results for caching
systems over general degraded broadcast channels [25], the
authors in [23] proposed achievable and converse bounds
for the worst-case and the average loads that are to within
a multiplicative gap of 2.315 and 2.507, respectively. An
approach based on solving a linear program derived from
the sub-modularity of entropy and simplified by leveraging
certain inherent symmetries in the caching problem was put
forth in [22] as a means to computationally generate converse
bounds; the approach allowed to solve the case of K = 2 users
and any number of files N , and gives at present the tightest
bounds for problems with small K and N (beyond which the
computational approach becomes practically unfeasible).

Converse bounds for uncoded cache placement: A dif-
ferent line of work that was initiated with our work in [4],
where we asked the question of what would be the ultimate
performance limit of cache-aided systems if one restricts the
placement phase to be uncoded. In [4], we studied such a set-
ting from the lens of IC. The IC had been connected to coded
caching earlier in [1, p. 2865, Section VIII.A]: “ [...] Now, for
fixed uncoded content placement and for fixed demands, the
delivery phase of the caching problem induces a so-called IC
problem. However, it is important to realize that the caching
problem actually consists of exponentially many parallel such
IC problems, one for each of the NK possible user demands.
Furthermore, the IC problem itself is computationally hard to
solve even only approximately. The main contribution of this
paper is to design the content placement such that each of the
exponentially many parallel IC problems has simultaneously
an efficient and analytical solution.” In [4], we analyzed the
performance of the caching problem for fixed uncoded content
placement and for fixed demands as an IC; by leveraging a
known IC converse bound, and by carefully picking certain
user demands, we explicitly characterized the worst case load
as a function of certain parameters of the placement phase,

which we (Fourier Motzkin) eliminated to find a closed form
expression for the optimal load. This paper is the long, journal
version, of our series of conference works that stared with [4].

The exact memory-load tradeoff for cache-aided systems
under the constraint of uncoded cache placement was charac-
terized in [13]. The converse bound in [13] is derived by a
genie-based idea (instead of directly leveraging the acyclic IC
converse bound as we did in [4], [5]), which is equivalent to
our approach here – see the first remark Section III-D. The
genie-based idea was also extended to the case of average load
(as opposed to worst case load) with uniform independent and
identically distributed demands. Our IC-based approach also
extends to the same average lead setting – see the second
remark in Section III-D.

Optimality for uncoded cache placement: By enhancing
the cut-set-type converse bound by an additional non-negative
term, the achievable load in [1] and its enhanced version
in [13] were proved to be optimal to within a factor 2 [26].
This is, to the best of our knowledge, the sharpest known
multiplicative gap, and implies that coded cache placement
can at most half the network load compared to the results
presented in [4] (and in this paper) and in [13].

Achievability and extensions: Much work has gone into
improving the MAN caching scheme, especially in the small
cache size regime where coded cache placement can outper-
form uncoded placement (as already noted in [1]). We shall
not deal further into this line of work as it is not relevant to
our work here.

The MAN caching scheme has been generalized to ac-
count for caching with nonuniform demands, multi-demands,
shared caches, distinct file sizes or distinct cache sizes, online
caching placement, hierarchical coded caching or other net-
work topologies, device-to-device applications, secrete caching
schemes, cache-aided systems with finite file size, etc. The
results for these important practical scenarios are not discuss
here as they are not directly relevant for our work. We note that
the connection between caching and IC can be also leveraged
in these systems, as we did for combination networks [27].

B. Main Contributions

Our main contributions, and how they compare to existing
works, are summarized in Table I. In a nut shell, we focus on
cache-aided systems with uncoded placement and study their
performance by drawing connections to the IC problem. More
precisely,

1) Converse for cache-aided systems with uncoded cache
placement. In Section III, by exploiting [28, Corollary 1]
for the IC problem, we derive a converse bound for the
load in centralized cache-aided systems with uncoded
cache placement. We show that it matches the load in [1]
when there are more files than users.

2) Novel IC achievable bound and its application to cache-
aided systems. In Section IV, we propose an IC achiev-
able bound based on Han’s coding scheme [29], Slepian-
Wolf coding [30] and non-unique decoding [31]. This
achievable scheme is shown to strictly outperform the
composite (index) coding scheme, and is, to the best our
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Table I
SUMMARY OF THE PAPER CONTRIBUTIONS.

Problem Proposed results Compared to the literature
Index coding Novel achievable scheme Strictly outperform the state-of-the-art in [28]

Caching Novel converse bound for uncoded placement Originally proposed in [4], [5], and later in [13]
Caching Our novel IC bound achieves our novel converse A generalized version of the scheme in [13] from the viewpoint of index coding

knowledge, the best random coding achievable bound
for the general IC problem to date. We then show
that our novel IC scheme matches our converse bound
for centralized cache-aided systems with uncoded cache
placement when there are less files than users, and
attains the same load as the scheme in [26].

C. Paper Outline

The rest of the report is organized as follows. The system
models for centralized cache-aided systems and for IC, and
their relationship, are introduced in Section II, as well as the
results on those two problems needed in later sections. In
Section III, we derive a converse bound under the constraint of
uncoded cache placement. In Section IV, we introduce a novel
IC achievable bound and use it to design a caching scheme
that achieves the proposed converse bound for the caching
problem. Section V concludes the paper. Some proofs may be
found in Appendix.

Results for decentralized cache-aided systems1 under the
constraint of uncoded cache placement are not reported here
because they follow from the same line of reasoning as those
for centralized systems as detailed in [32] – see also the third
remark in Section IV-C.

II. SYSTEM MODELS AND SOME KNOWN RESULTS

A. Notation

Calligraphic symbols denote sets; symbols in bold font
denote vectors; | · | is used to represent the cardinality of a set
or the length of a file in bits; we let A \ B := {x ∈ A|x /∈ B},
[a : b : c] := {a, a + b, a + 2b, ..., c}, [a : c] = [a : 1 : c] and
[n] = [1 : n]; the bit-wise XOR operation between binary
vectors is indicated by ⊕; for two integers x and y, we let(
x
y

)
= 0 if x < y or x ≤ 0.

B. The Centralized Caching Problem: Definition

The information-theoretic formulation of the centralized
coded caching problem in Fig. 1, as originally formulated by
Maddah-Ali and Niesen in [1], is as follows.
• The system comprises a server with N independent files,

denoted by (F1, F2, . . . , FN ), and K users connected to

1Cache-aided systems are divided into two classes, centralized [1] and
decentralized [2], depending on whether users can coordinate during the
placement phase. In centralized cache-aided systems, the users in the two
phases of the caching scheme are assumed to be the same; therefore,
coordination among users is possible in the placement phase. In practice, for
example due to users’ mobility, a user may be connected to a server during
its placement phase but to a different one during its delivery phase; in such
scenarios, coordination among users during the placement phase is thus not
possible.

Z1

(d1, . . . , dK)

(F1, . . . , FN )

Z2 Z3 ZK· · · user caches
(size MB bits each)

N Files
(size B bits each)

user demands

Figure 1. A centralized cache-aided system where a server with
N files of size B bits is connected to K users equipped with a
cache of size MB bits.

it through an error-free link. Each file has B independent
and equally likely bits.

• In the placement phase, user k ∈ [K] stores content
from the N files in its cache of size MB bits without
knowledge of later demands, where M ∈ [0, N ]. We
denote the content in the cache of user k ∈ [K] by
Zk = φk(F1, . . . , FN ), where

φk : [0 : 1]NB → [0 : 1]bMBc, ∀k ∈ [K]. (1)

We also denote by Z := (Z1, . . . , ZK) the content of all
the caches.

• In the delivery phase, each user demands one file and the
demand vector d := (d1, d2, . . . , dK), where dk ∈ [N ]
corresponds to the file demanded by user k ∈ [K], is
revealed to the server and all users. Given (Z,d), the
server broadcasts the message Xd = ψ(F1, . . . , FN ,d),
where

ψ : [0 : 1]NB × [N ]K → [0 : 1]dRBe. (2)

• Each user k ∈ [K] estimates the demanded file as F̂k =
µk(Xd, Zk), where

µk : [0 : 1]dRBe × [0 : 1]bMBc → [0 : 1]B , ∀k ∈ [K].
(3)

• The (worst-case over all possible demands) probability of
error is

P (B)
e := max

d∈[N ]K
Pr

[
K⋃

k=1

{
F̂k 6= Fdk

}]
. (4)

• A pair (M,R) is said to be achievable if there exit place-
ment functions as in (1), encoding function as in (2) and
decoding functions as in (3) such that limB→∞ P

(B)
e = 0,

where P (B)
e was defined in (4).

• The objective is to determine, for a fixed M , the (worst-
case) load

R? := inf{R : (M,R) is achievable}. (5)
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In the following, we say that the placement phase is uncoded
if the bits of the various files are simply copied within the
caches. Formally,

Definition 1 (Uncoded cache placement). The placement
phase is said to be uncoded if the cache contents in (1) are
Zk = (A1,k, A2,k, . . . , AN,k) where Ai,k ⊆ Fi for all files
i ∈ [N ] and such that

∑
i∈[N ] |Ai,k| ≤ MB, for all users

k ∈ [K].

The (worst-case) load under the constraint of uncoded cache
placement is denoted as R?

u . Trivially R?
u ≥ R?.

C. The Centralized Caching Problem: MAN Achievability

We start with the description of the MAN scheme in [1].
Let the cache size be M = tNK , for some positive integer
t ∈ [0 : K]. In the placement phase, each file is partitioned
into

(
K
t

)
equal size sub-files of B/

(
K
t

)
bits. The sub-files of

Fi are denoted by Fi,W for W ⊆ [K] where |W| = t. User
k ∈ [K] fills its cache as

Zk =
(
Fi,W : k ∈ W, W ⊆ [K], |W| = t, i ∈ [N ]

)
. (6)

In the delivery phase, given the demand vector d, the server
transmits

Xd =
(
⊕s∈S Fds,S\{s} : S ⊆ [K], |S| = t+ 1

)
, (7)

which requires broadcasting B
(

K
t+1

)
/
(
K
t

)
bits. Note that user

k ∈ S, for S as in (7), wants Fdk,S\{k} and has cached
Fds,S\{s} for all s ∈ S : s 6= k, so it can recover Fdk,S\{k}
from Xd in (7) and the cache content in (6). The load is thus
given by

Rc,u,MAN[t] :=

(
K
t+1

)
(
K
t

) ≥ R?, (8)

where the subscript “c,u,MAN” in (8) stands for “centralized
uncoded-placement Maddah-Ali and Niesen.” For M K

N not
an integer, one takes the lower convex envelope of the set of
points (M,R) =

(
tNK , Rc,u,MAN[t]

)
for t ∈ [0 : K].

The MAN scheme was improved in [26] as follows. Of the(
K
t+1

)
transmitted linear combinations in (7),

(
K−min(K,N)

t+1

)

can be obtained as linear combinations of the other transmis-
sions. Therefore, by removing these redundant transmissions
for the case N < K, the load becomes

Rc,u,YMA[t] :=

(
K
t+1

)
−
(
K−min(K,N)

t+1

)
(
K
t

) ≥ R?, (9)

for M = tNK with t ∈ [0 : K], where the subscript “c,u,YMA”
in (9) stands for “centralized uncoded-placement Yu Maddah-
Ali Avestimehr.” For M K

N not an integer, one takes the lower
convex envelope of set of points (M,R) =

(
tNK , Rc,u,YMA[t]

)

for t ∈ [0 : K]. Notice that the load in (9) is strictly smaller
than the one in (8) for N < K.

{
Mi : i ∈ A1

}

Encoder

User 1

User 2

User K’

{
Mi : i ∈ A2

}

{
Mi : i ∈ AK′

}

(M1, . . . , MN ′)

{
M̂

(1)
i : i ∈ D1

}

{
M̂

(K′)
i : i ∈ DK′

}

{
M̂

(2)
i : i ∈ D2

}

...

Xn

Figure 2. An IC problem with N ′ files and K′ users.

D. The Index Coding Problem: Definition

The IC problem, shown in Fig. 2 and originally proposed
in [33] in the context of broadcasting with message side
information, is defined as follows.
• A sender wishes to communicate N ′ independent mes-

sages to K ′ users. The server is connected to the users
through a noiseless channel with finite input alphabet X .

• Each user j ∈ [K ′] demands a set of messages indexed by
Dj ⊆ [N ′] and knows a set of messages indexed by Aj ⊆
[N ′]. In order to avoid trivial problems, it is assumed that
Dj 6= ∅, Aj 6= [N ′], and Dj ∩ Aj = ∅.

• A (|X |nR1 , . . . , |X |nRN′ , n, εn)-code for the IC problem
is defined as follows. Each message Mi, i ∈ [N ′], is
uniformly distributed on [|X |nRi ], where n is the block-
length and Ri ≥ 0 is the transmission rate in symbols
per channel use. In order to satisfy the users’ demands,
the server broadcasts Xn = enc(M1, . . . ,MN ′) ∈ Xn

where enc is the encoding function. Each user j ∈ [K ′]
estimates the messages indexed by Dj by the decoding
function decj

(
Xn, (Mi : i ∈ Aj)

)
. The probability of

error is

εn : = max
j∈[K′]

Pr
[
decj

(
Xn, (Mi : i ∈ Aj)

)
6=

(Mi : i ∈ Dj)] . (10)

• A rate vector (R1, . . . , RN ′) is said to be achievable
if there exists a family of (|X |nR1 , . . . , |X |nRN′ , n, εn)-
codes for which limn→∞ εn = 0, for εn in (10).

• The goal is to find the capacity region, defined as the
largest possible set of achievable rate vectors.

Remark 1. We used the definitions in [34, Chapter 1, Section
1.2], in which the definition of capacity region depends on the
alphabet size |X |. However, as proved in [34, Lemma 1.1],
the choice of the alphabet size X is irrelevant to the actual
capacity region itself. Intuitively, this is so because the rates
are defines in symbols per channel use or, equivalently, the
base of the logarithms is |X |.

E. The Index Coding Problem: Composite (Index) Coding
Achievable Bound

The composite (index) coding achievable bound proposed
in [28] is a two-stage scheme based on binning and non-unique
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decoding. In the first encoding stage, for each J ⊆ [N ′],
the messages (Mi : i ∈ J ) are encoded into the composite
index WJ ∈ [|X |nSJ ] at some rate SJ ≥ 0 based on random
binning. By convention, S∅ = 0. In the second encoding stage,
the collection of all composite indices (WJ : J ⊆ [N ′]) is
mapped into a length-n sequence Xn which is received error-
free by all users.

In the first decoding stage, every user recovers all composite
indices. In the second decoding stage, user j ∈ [K ′] chooses
a set Kj such that Dj ⊆ Kj ⊆ [N ′]\Aj and uniquely decodes
all messages (Mi : i ∈ Kj); the decoding of user j ∈ [K ′] is
based on the recovered (WJ : J ⊆ Kj ∪ Aj).

The achievable rate region by composite (index) coding is
stated next, from [28, Proposition 6.11].

Theorem 1 (Composite IC Achievable Bound, generalized to
allow for multicast messages). A non-negative rate tuple R :=
(R1, . . . , RN ′) is achievable for the IC problem

(
(Aj ,Dj) :

j ∈ [K ′]
)

defined in Section II-D provided that

R ∈
⋂

j∈[K′]

⋃

Kj :Dj⊆Kj⊆[N ′]\Aj

R(Kj |Aj ,Dj), (11a)

R(K|A,D) :=
⋂

J :J⊆K

{∑

i∈J
Ri < vJ

}
, (11b)

where in (11b) vJ is defined as

vJ :=
∑

P:P⊆A∪K,P∩J 6=∅

SP , (11c)

and where in (11c) the non-negative quantities (SJ : J ⊆
[N ′]) must satisfy

∑

J :J∈[N ′],J*Aj

SJ < 1, ∀j ∈ [K ′]. (11d)

Note that the constrain in (11d) is from the first decoding
stage and the one in (11c) from the second decoding stage.

F. The Index Coding Problem: Acyclic Subgraph Converse
Bound for Multiple Unicast Index Coding

If K ′ = N ′ and Dj = {j} where j 6∈ Aj for each j ∈ [N ′],
the IC is known as the multiple unicast IC. The multiple
unicast IC problem can be represented as a directed graph
G, where each node in the graph represents one user and
its demanded message, and where a directed edge connects
node i to node j if user j knows the message desired by
user i. By the submodularity of entropy, a converse bound was
proposed in [35, Theorem 3.1] for the symmetric rate case and
extended in [28, Theorem 1] to the case where messages can
have different rates. Due to the high computational complexity,
the converse bound in [28, Theorem 1] can only be evaluated
for IC problems with limited number of messages. A looser
(compared to [28, Theorem 1]) converse bound was proposed
in [28, Corollary 1] and is stated next.

Theorem 2 (Acyclic Subgraph Converse Bound for Multiple
Unicast IC [28]). If (R1, . . . , RN ′) is achievable for the
multiple unicast IC problem

(
(Aj ,Dj = {j}) : j ∈ [N ′]

)
,

defined in Section II-D and represented by the directed graph
G, then it must satisfy

∑

j∈J
Rj ≤ 1, (12)

for all J ⊆ [N ′] where the sub-graph of G over the vertices
in J does not contain a directed cycle.

The proof of Theorem 2 is based on noticing that a user k1

in the found acyclic subgraph can decode the message of the
following user k2 either because Ak2

⊆ Dk1
∪ {k1} (user k1

can mimic user k2) or by giving user k1 genie side information
so that it can mimic user k2.

G. Mapping the Caching Problem with Uncoded Cache Place-
ment into an Index Coding Problem

As mentioned before, the caching problem with uncoded
cache placement can be see as a family of IC problems. The
difference between caching and IC is that the side information
sets are fixed in IC, while they represent the cache contents
that must be properly designed in caching; moreover, in IC the
demands are also fixed, while in caching one must consider all
possible demands. In caching, if the cache placement phase is
uncoded, the delivery phase is an IC problem for appropriately
defined message and demand sets. Hence, IC results can be
leveraged for the caching problem, as we do in this paper.

Under the constraint of uncoded cache placement, when the
cache contents and the demands are fixed, the delivery phase of
the caching problem is equivalent to the following IC problem.
Denote the set of distinct demanded files in the demand vector
d by N (d), that is N (d) := ∪k∈[K]{dk}. For each i ∈ N (d)
and for each W ⊆ [K], the sub-file Fi,W (containing the bits
of file Fi only within the cache of the users indexed by W)
is an independent message in the IC problem with user set
[K]. Hence, by using the notation introduced in Sections II-D
and II-B, we have K ′ = K and N ′ ≤ |N (d)|(2K − 1). For
each user k ∈ [K] in this general IC problem, the desired
message set and the side information sets are given by

Dk :=
{
Fdk,W :W ⊆ [K], k /∈ W

}
, (13)

Ak :=
{
Fi,W :W ⊆ [K], i ∈ N (d), k ∈ W

}
. (14)

III. CONVERSE BOUND FOR CENTRALIZED CACHE-AIDED
SYSTEMS WITH UNCODED CACHE PLACEMENT

In this section, we leverage the connection between caching
and IC problems outlined in Section II-G to investigate the
fundamental limits of centralized cache-aided systems with
uncoded cache placement. We derive a converse bound (by
using Theorem 2 in Section II-F) that matches the achievable
load Rc,u,YMA in (9).

A. Theorem Statement

The following converse bound on the load of centralized
cache-aided systems under the constraint of uncoded cache
placement was first presented in our conference papers [4],
[5]. Recall that we denote the optimal load by R?, and the



6

optimal load under the constraint of uncoded cache placement
(see Definition 1) as R?

c,u.

Theorem 3. In centralized cache-aided systems the load R?
c,u

satisfies

R?
c,u ≥ cq + (cq − cq−1)

(
KM

N
− q
)
, (15)

cq :=

(
K
q+1

)
−
(
K−min(K,N)

q+1

)
(
K
q

) , ∀q ∈ [0 : K]. (16)

Moreover, this converse bound is a piece-wise linear curve
with corner points

(M,R) =

(
q
N

K
, cq

)
, ∀q ∈ [0 : K]. (17)

Before we proceed to prove the general converse bound
in Theorem 3, we give a specific example. This example
introduces the main ideas in the proof.

B. An Example

The reasoning in this example applies to the general case
K ≤ N ; the case K > N will be dealt with in the general
proof.

Assume that the server has N = K = 3 files, denoted as
(F1, F2, F3). The file length in number of bits is B. The cache
size in number of bits is MB, for some M ∈ [0, N ] = [0, 3].
After the uncoded cache placement phase is done, each file
Fi can be thought as having been divided into 2K = 23 = 8
disjoint sub-files, denoted as

(
Fi,W :W ⊆ [K], i ∈ [N ]

)
, (18)

where Fi,W has been cached only by the users indexed by
W . For simplicity in the following we omit the braces when
we indicate sets, i.e., F1,12 represents F1,{1,2}, which dos not
create any confusion for this example.

For each demand vector d = (d1, d2, d3) ∈ [N ]K = [3]3,
we generate an IC problem with at most |N (d)|2K−1 = 12
independent messages. These messages are

⋃

k∈[K],W⊆[K]:k 6∈W

Fdk,W , (19)

and represents the sub-files demanded by the users in [K] but
not available in their caches. The messages available as side
information to user k ∈ [K] for this IC are

⋃

i∈N (d),W⊆[K]:k∈W

Fi,W . (20)

For this IC problem, we generate a directed graph as follows.
Each vertex corresponds to a different sub-file. There is a
directed arrow from Fdk1

,W1
to Fdk2

,W2
if and only if user

k2 caches Fdk1
,W1

(i.e., k2 ∈ W1). For example, Fig. 3 shows
the directed graph representing this IC problem for the demand
vector d = (1, 2, 3).

Consider the demand vector d = (d1, d2, d3), where di ∈
[N ] = [3], i ∈ [K] = [3]. In order to apply Theorem 2,
in the constructed directed graph we want to find sets of
vertices J that do not form a directed cycle. No receiver

has stored F1,∅, F2,∅, F3,∅, so there is no outgoing edge from
F1,∅, F2,∅, F3,∅ to any other vertex in the graph. Therefore,
F1,∅, F2,∅, F3,∅ are always in the such sets J when we
evaluate (12).

We focus next on demand vectors d with distinct demands,
that is, |N (d)| = min(N,K) = K = 3; the worst case
demand may not be in such a set of demand vectors, but this
is not a problem as we aim to derive a converse bound on the
(worst-case) load at this point. For a demand vector d with
distinct demands, consider now a permutation u = (u1, u2, u3)
of [K] = [3]. For each such u, a set of nodes not containing a
cycle is as follows: Fdu1 ,W1

for all W1 ⊆ [K]\{u1}, and
Fdu2 ,W2

for all W2 ⊆ [K]\{u1, u2}, and Fdu3 ,W3
for all

W3 ⊆ [K]\{u1, u2, u3} = ∅. For example, when d = (1, 2, 3)
and u = (1, 3, 2), we have

du1
= d1 = 1;W1 ⊆ [K]\{u1} = [3]\{1} = {2, 3}, (21)

du2
= d3 = 3;W2 ⊆ [K]\{u1, u2} = [3]\{1, 3} = {2},

(22)
du3

= d2 = 2;W3 ⊆ [K]\{u1, u2, u3} = ∅, (23)

and the corresponding set not containing a cycle is

(F1,∅, F1,2, F1,3, F1,23, F3,∅, F3,2, F2,∅). (24)

More precisely, F1,∅, F1,2, F1,3, F1,23 are demanded by user
1 and thus there is no cycle among them. User 1 does not
know F3,∅, F3,2 and thus there is no directed arrow from each
of F3,∅, F3,2 to each of F1,∅, F1,2, F1,3, F1,23. So there is no
cycle in (F1,∅, F1,2, F1,3, F1,23, F3,∅, F3,2). Finally, user 1 and
user 3 do not know F2,∅, and thus there is no directed arrow
from F2,∅ to each of F1,∅, F1,2, F1,3, F1,23, F3,∅, F3,2. So we
can see the chosen set is acyclic (see figure 4).

From (12), we have that the acyclic set of nodes in (24) can
be used to write the following bound (in which 2BR?

c,u plays
the role of |X |)

BR?
c,u ≥

|F1,∅|+ |F1,2|+ |F1,3|+ |F1,23|+ |F3,∅|+ |F3,2|+ |F2,∅|.
(25)

In general, when K ≤ N we can find a bound such as
the one in (25) for all possible pairs d ∈ Perm(N,K)
and u ∈ Perm(K,K), where Perm(n, k) denotes the set
of all k−permutations of n elements (there are n!

(n−k)! el-
ements in the set Perm(n, k) for n ≥ k). If we sum all
the |Perm(N,K)||Perm(K,K)| =

(
N
K

)
(K!)2 = (3!)2 = 36

inequalities as in (25), we get

R?
c,u ≥

1

(3!)2

∑

d∈Perm(3,3)

∑

u∈Perm(3,3)

∑

j∈[3]

∑

Wj⊆[3]\{u1,...,uj}

|Fduj
,Wj
|

B

(26a)

=
∑

t∈[0:3]

xt

(
3

t+1

)
(

3
t

) (26b)

= 3 · x0 + 1 · x1 +
1

3
· x2 + 0 · x3, (26c)
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F1,2

F2,3

F3,1

F3,12

F3,2

F2,13

F2,1

F1,23

F1,3

F1,0 F2,0 F3,0

Figure 3. Directed graph for the equivalent IC scenario corresponding to the caching problem with N = K = 3, and with demand vector
d = (1, 2, 3). Each sub-file demanded by each user is an independent node in the directed graph. A directed arrow from Fdk1

,W1 to Fdk2
,W2

appears if and only if user k2 caches Fdk1
,W1 (i.e., k2 ∈ W1). Different types and colours for arrows are intended to distinguish dense

arrows in the figure.

Figure 4. Nodes forming an acyclic subgraph are circled in red. Left: demand (1, 2, 3) and permutation (2, 1, 3). Right: demand (1, 2, 3)
and permutation (3, 1, 2).

where xt in (26b) is defined as

0 ≤ xt :=
∑

j∈[N ]

∑

W⊆[K]:|W|=t

|Fj,W |
NB

, t ∈ [0 : K], (27)

and represnts the fraction of the total number of bits across
all files that are known/cached exclusively by a subset of t ∈
[0 : K] = [0 : 3] users.

The general proof of (26b) can be found in (36b). At this
point we can offer the following intuitive interpretation for
the case K ≤ N , as it is the case in this example. The total
number of sub-files cached by a subset of t ∈ [0 : K] users
is N

(
K
t

)
, where the factor

(
K
t

)
appears at the denominator

of (26b) (here K = 3), and the factor N at the denominator
of (27). The total number of sub-files cached by a subset of
t ∈ [0 : K] users in (25) (by the symmetry of the problem,
the other bounds for different pair d and u have the same

structure as (25)) is
∑

i∈[K]

∑

Wi⊆[K]\{u1,...,ui}

1{|Wi|=t}

=

(
K − 1

t

)
+

(
K − 2

t

)
+ . . .+

(
t

t

)
=

(
K

t+ 1

)
, (28)

where 1{A} in the indicator function that is equal to one if
and only if the condition in A is true, and where we use
the Pascal’s triangle identity; the factor

(
K
t+1

)
(here K = 3)

appears at the numerator of (26b).
In addition to the bounds in (26) and (27), we also have

that the total number of bits in the files is
∑

j∈[N ]

∑

W⊆[K]

|Fj,W | = NB ⇐⇒
∑

t∈[K]

xt = 1, (29)

and that the total number of bits in the caches must satisfy
∑

j∈[N ]

∑

W⊆[K]:j∈W

|Fj,W | ≤ KMB ⇐⇒
∑

t∈[K]

t xt ≤
KM

N
.

(30)
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Please note that (29) arises from the total number of bits
across all files, which is a looser constraint than imposing
that each file contains the same number of bits; similarly, (30)
arises from the total number of bits across all caches, which
is a looser constraint than imposing that each cache has the
same size. None of these is a problem as we aim to derive
a converse bound on the load at this point. This implies that
that the converse bound we derive applies to the case where
the total number of bits across all files and the total number
of bits across all caches are constrained, but not the size each
individual file or each individual cache.

The constraints in (26)-(30) provide a converse bound for
the load R?

c,u with uncoded cache placement. Since there are
many inequalities in K + 1 = 4 unknowns, we proceed to
eliminate (x0, x1, x2, x3) in the system of inequalities in (26)-
(30). By doing so, we obtain

R?
c,u

by eq.(26c)
≥ 3x0 + x1 +

1

3
x2

by eq.(29)
= 3(1− x1 − x2 − x3) + x1 +

1

3
x2

= 3− 2x1 −
8

3
x2 − 3x3

by eq.(30)
≥ 3 + 2(2x2 + 3x3 −M)− 8

3
x2 − 3x3

= 3− 2M +
2

3
x2 + 3x3

by eq.(27)
≥ 3− 2M. (31)

Similarly, we can obtain

R?
c,u ≥ −

2

3
M +

5

3
, (32)

R?
c,u ≥ −

1

3
M + 1. (33)

The maximum among the right-hand sides of (31), (32)
and (33) give a piecewise linear curve with corner points:
(0, 3), (1, 1), (2, 1

3 ), (3, 0). Since these corner points are
achieved by Rc,u,MAN[t], t ∈ [0 : 3], in (8), we conclude that
the two-phase strategy in [1] is optimal under the constraint
of uncoded cache placement in this case. Note that this shows
that demand vectors with distinct demands lead to the worst
case load.

We are now ready to extend the reasoning in this example to
a general setting, where we do not necessarily impose K ≤ N .

C. Proof of Theorem 3

Consider a system with uncoded cache placement and a
demand vector with min(K,N) distinct demanded files. We
treat the delivery phase of this caching scheme as an IC
problem, as described in Section II-G. We derive a converse
bound on R?

c,u using Theorem 2. A directed graph can be
generated for such IC problem as described in Section II-G.
We propose the following lemma to give the sets of nodes not
containing a directed cycle, whose proof is in Appendix A.

Lemma 1. Let u = (u1, u2, . . . , umin(K,N)) be a permutation
of C, where C is the chosen user set with different demands.
A set of nodes not containing a directed cycle in the directed

graph of the corresponding IC problem can be composed of
sub-files
(
Fdui

,Wi
:Wi ⊆ [K]\{u1, . . . , ui}, i ∈ [min(K,N)]

)
.

(34)

With the set of nodes not containing a directed cycle in the
directed graph of the corresponding IC problem as in (34), we
write the bound in (12) from Theorem 2 as

R?
c,u ≥

∑

i∈[min(K,N)]

∑

Wi⊆[K]\{u1,...,ui}

|Fdui
,Wi
|

B
. (35)

Note that, in the bound in (35), there are
∑

i∈[min(K,N)]

(
K−i
t

)

subfiles known by exactly t users whose coefficient is 1. We
can also note that in general there are N

(
K
t

)
subfiles known

by exactly t users. By considering all sets C of users with
min(K,N) distinct demands, and all the permutations u of
C, we can list all the inequalities in the form of (35) and sum
them together to obtain

R?
c,u ≥

∑

t∈[0:K]

(
K−1

t

)
+
(
K−2

t

)
+ · · ·+

(
K−min(K,N)

t

)
(
K
t

) xt

(36a)

=
∑

t∈[0:K]

(
K
t+1

)
−
(
K−min(K,N)

t+1

)
(
K
t

) xt, (36b)

where from (36a) to (36b) we use the Pascal’s triangle equality,
where the set of coefficients (x0, . . . , xK) defined in (27) can
be interpreted as a probability mass function (see (29)) subject
to a first-moment constraint (as given in (30)).

Next, we introduce the following key Lemma, whose proof
can be found in Appendix B.

Lemma 2. Let K, N be positive integers where K > N . For
any q ∈ [K − 1], sq+1 ≥ sq , where sq is defined as

sq := cq − cq−1, (37)

where cq was defined in (16).

Lemma 2 is key in performing Fourier Motzkin elimination
of xq and xq−1 in (36b) for each q ∈ [K], at the end of which
we obtain the bound in (15) – see Appendix C for details.

The bound in (15) is a family of straight lines parameterized
by q ∈ [K]. The lines for q = t and q = t − 1 intersect at
the point in (17) because the coefficients ct in (16) decreases
monotonously in t ∈ [K − 1]. This concludes the proof.

D. Remarks

a) On the equivalence of our converse bound and other
bounds that appeared in the literature after we made available
online our works in [4], [5]: In [13], the authors propose
a genie-aided converse bound to arrive to our very same
inequality in (35), where (35) was originally derived in [4],
[5] by leveraging the IC acyclic converse bound. These two
approaches are completely equivalent. Firstly, the IC acyclic
converse bound can be proved by providing genie information
to the receivers in the acyclic set. Secondly, the following
steps in [13] are also the same as in our original work [4],
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[5], namely, summing together all the inequalities, bounding
the load by the new variables (xt : t ∈ [0 : K]) defined
in (27), and eliminating the new variables to get the final
converse bound. The only difference is that we use Fourier-
Motzkin elimination to eliminate the new variables, while the
authors in [13] treat the new variables as a probability mass
function and optimized the bound over all probability mass
functions (see (29)) with a given constraint on the first moment
(see (30)).

b) Generalization of our converse bound to the case of
average load or asymmetric settings: Our proposed converse
bound trivially generalizes to different memory sizes or to
different file sizes or to average load. Let the cache size of
user i ∈ [K] be MiB bits, and the length of file j ∈ [N ] be
LjB bits. We have

R?
c,u ≥ Rc,low, (38a)

where Rc,low is further lower bounded as
∑

d∈[N ]K

Pr[d]Rd ≤ Rc,low, (for average load), or (38b)

Rd ≤ Rc,low, (for worst-case load), (38c)

where we optimize over the lengths of the subfiles subject to
∑

W⊆[K]

|Fj,W | = LjB, ∀j ∈ [N ], (file length), (38d)

∑

j∈[N ]

∑

W⊆[K]:u∈W

|Fj,W | ≤MuB, ∀u ∈ [K], (cache size),

(38e)∑

ißN (d)

∑

Wi⊆[K]\{u1,...,ui}

|Fdui
,Wi
| ≤ Rd, (acyclic IC bound),

(38f)

where the demand vector d ∈ [N ]K in (38f) hasN (d) distinct
entries, and where the u is a permutation of the sub-vector of
d with distinct entries.

The bound in (38) is a linear program with min{N,K}!×
NK + N + K + 1 constraints in N2K + 1 variables, which
becomes computationally intense to evaluate when K is large.
The symmetry of the caching problem (i.e., invariance to rela-
beling either the files or the users) enabled us to: (i) combine
together the N bounds in (38d) in the single constraint like
in (29), (ii) combine together the K bounds in (38e) in the
single constraint like in (30), and (iii) combine together the
min{N,K}! × NK bounds in (38f) in the single constraint
like in (26), without apparently any loss in optimality.

IV. ACHIEVABLE BOUND FOR CENTRALIZED
CACHE-AIDED SYSTEMS WITH UNCODED CACHE

PLACEMENT

In this section, we give an alternate proof to the one in [13]
that our converse bound in Theorem 3 is indeed achievable.

A. Theorem Statement

Theorem 4. The converse bound in Theorem 3 is achievable
by the MAN uncoded cache placement and a delivery scheme
based on the IC achievable scheme in Theorem 5.

The proof of Theorem 4 is given in Section IV-B.

Theorem 5 (Novel Achievable Scheme for the General
Index Coding Problem). A non-negative rate tuple R :=
(R1, . . . , RN ′) is achievable for the IC problem

(
(Aj ,Dj) :

j ∈ [K ′]
)

defined in Section II-D if

R ∈
⋂

j∈[K′]

⋃

Kj :Dj⊆Kj⊆[N ′]\Aj

R(Kj |Aj ,Dj), (39a)

R(K|A,D) :=
⋂

J :J⊆K,D∩J 6=∅

{∑

i∈J
Ri < κJ

}
, (39b)

where in (39b) κJ is defined as

κJ := I
(

(Ui : i ∈ J );V
∣∣(Ui : i ∈ Aj ∪ Kj \ J )

)
, (39c)

V :=
(
VP : P ⊆ [N ′]

)
, (39d)

VP a function of
(
Ui : i ∈ P

)
, ∀P ⊆ [N ′], (39e)

for some independent auxiliary random variables (Ui : i ∈
[N ′]) and such that

H
(
V
∣∣(Ui : i ∈ Aj

))
< 1, ∀j ∈ [K ′]. (39f)

The proof of Theorem 5 is given in Appendix D. Note that
the cardinality of the auxiliary random variables Ui, i ∈ [N ′],
can be bounded as in [29, Section 4.2] (in particular, let p = 1
and A(i) = X in [29, Theorem 4.2]), thus leading to |Ui| <
|X | + K ′. In addition, since VP , P ⊆ [N ′], is a function of(
Ui : i ∈ P

)
, we have |VP | ≤

∏
i∈P |Ui|.

Corollary 1. The composite (index) coding region in Theo-
rem 1 is included in our novel Theorem 5.

The proof of Corollary 1 is given in Appendix E.

B. Proof of Theorem 4
For centralized cache-aided systems under the constraint of

uncoded cache placement, the claim of Theorem 4 is true for
N ≥ K because the converse bound in (17) coincides with
the MAN scheme in (8). For N < K, Theorem 5 can be used
to achieve (17), as showed next.

We use the same placement phase as MAN for M = tNK ,
for t ∈ [0 : K], so that the delivery phase is equivalent to
an IC problem with K users in which each sub-file Fi,W ,
for i ∈ N (d), W ⊆ [K] and |W| = t, is an independent
message, and where the desired message and side information
sets are given by (13) and (14), respectively. Note that the
message rates in this equivalent IC problem are identical by
construction and the number of messages for the worst case-
load is N ′ = min(N,K)

(
K
t

)
.

In Theorem 5, following Example 1, we let Kj = Dj for j ∈
[K], we represent Fi,W as a binary vector of length B/

(
K
t

)
bits

(assumed to be an integer without loss of generality) and we let
the corresponding random variable U be equal to the message.
We also let VP be non zero only for the linear combinations
of messages sent by the MAN scheme in [1]. From (39b),
for each set J ⊆ {Fdk,W : k /∈ W}, we have |J |Rsym <
|J |H(U). With this we have Rsym = H(U) = B/

(
K
t

)
and

1 = H(X) = B

(
K
t+1

)
−
(
K−min(N,K)

t+1

)
(
K
t

) , (40)
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so the symmetric rate is

Rsym =
1(

K
t+1

)
−
(
K−min(N,K)|

t+1

) (41)

Each receiver in the original caching problem is interested in
recovering

(
K
t

)
messages/subfiles, or one file of B bits, thus

the ‘sum-rate rate’ delivered to each user is

Rsum-rate =

(
K
t

)
(

K
t+1

)
−
(
K−min(N,K)

t+1

) (42)

The load in the caching problem is the number of transmis-
sions (channel uses) needed to deliver one file to each user,
thus the inverse of Rsum-rate indeed corresponds to the load
in (9).

C. Remarks

a) On the interpretation on the MAN scheme as source
coding with side information: Our proof of Theorem 4 uses
Theorem 5 and gives an interpretation of the achievable
scheme proposed in [13] via the framework of source coding
with side information. Our novel IC approach has the advan-
tage that it applies to any IC problem, and is not limited to
binary linear codes for the specific MAN placement as that
of [13] when applied to the caching problem.

b) On general achievable regions for IC: The composite
(index) coding region in Theorem 1 is included in our novel
Theorem 5, as shown in Appendix E. The proof of Corollary 1
can be found in Appendix E. In addition, from the proof of
Corollary 1, we see that the rate region achieved by composite
(index) coding can be realized by linear coding.

The work in [36] improves on the composite (index) coding
scheme in Theorem 1 by further rate-splitting. In Remark 2
in Appendix D we discuss how the same idea can be used to
improve on Theorem 5. Finally, in Example 1 in Appendix D
we give an example to show that our Theorem 5 strictly
improves on [36]. It thus appears that our region in Theorem 5
is the largest known achievable region to date of the general
IC based on random coding.

c) On the extension to decentralized systems: By directly
extending our proposed achievable scheme in Theorem 4 and
converse bound in Theorem 3 to decentralized systems, we
can prove that under the constraint that each user randomly,
uniformly and independently chooses MB bits of the N files
to store in its local cache, the optimal load can be achieved
by the novel IC achievable bound in Theorem 5; this result
was shown in [4]. More precisely, for the converse part, since
each user randomly, uniformly and independently chooses
MB bits of the N files to store, by a Low-of-Large-Numbers
type reasoning, the length of each subfile does not deviate
much from its mean when the file size is large. Hence, we
can use the technique proposed in Section III-C to find the
largest acyclic sets of subfiles for each possible demand vector.
For the achievability part, we can use the proposed delivery
scheme in Section IV-B for K rounds, where in each round
we transmit the subfiles known by exactly t ∈ [0 : K] users.
The details can be found in the first author’s Ph.D. thesis [32].

V. CONCLUSION

In this paper we investigated the coded caching problem
with uncoded cache placement by leveraging its connection
to the index coding problem. We first derived a converse
bound on the worst-case load of cache-aided systems under
the constraint of uncoded cache placement by cleverly com-
bining many acyclic index coding converse bounds derived
by considering different demands in the caching problem.
When there are more users than files, we proved that the load
of the MAN scheme coincides with the proposed converse
bound. In the remaining cases, our converse bound is attained
by using the MAN placement phase and a delivery phase
based on novel index coding scheme. The proposed novel
index coding achievable scheme is based on distributed source
coding and is shown to strictly improves on the well known
composite (index) coding achievable bound and is, to the best
our knowledge, the best random coding achievable bound for
the general IC problem to date.

The present work parallels the recent results in [13].
Our main contribution compared to [13] is to build on the
connection among the caching problem with uncoded cache
placement and the index coding problem.

APPENDIX A
PROOF OF LEMMA 1

For a u = (u1, u2, . . . , umin(K,N)), we say that sub-
files/nodes Fdui

,Wi
, for all Wi ⊆ [K]\{u1, . . . , ui}, are in

level i. It is easy to see each node in level i only knows the
sub-files Fj,W where ui ∈ W . So each node in level i knows
neither the sub-files in the same level, nor the sub-files in the
higher levels. As a result, in the proposed set there is no sub-
set containing a directed cycle.

APPENDIX B
PROOF OF LEMMA 2

Recall that

sq = cq − cq−1, (43)

and cq =

(
K
q+1

)
−
(
K−min(K,N)

q+1

)
(
K
q

)

=

(
K−1
q

)
+ · · ·+

(
K−min(K,N)

q

)
(
K
q

) . (44)

Focus on the first term of sq in (43), we have

cq =

(
K−1
q

)
+ · · ·+

(
K−min(K,N)

q

)
(
K
q

) =
K − q
K

+ · · ·+

(K − q)× ...× (K − q −min(K,N) + 1)

K × ...× (K −min(K,N) + 1)
. (45)

For the second term of sq

cq−1 =

(
K−1
q−1

)
+ · · ·+

(
K−min(K,N)

q−1

)
(

K
q−1

) =
K − q + 1

K
+ · · ·+

(K − q + 1)× · · · × (K − q −min(K,N) + 2)

K × · · · × (K −min(K,N) + 1)
. (46)
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By taking (45) and (46) into (43), we finally obtain

sq = − 1

K
− 2(K − q − 1)

K(K − 1)
− · · · (47)

− min(K,N)(K − q)× · · · × (K − q −min(K,N) + 2)

K × · · · × (K −min(K,N) + 1)
.

(48)

Since each negative term in (48) is monotone increasing with
q, it is easy to check that for any q ∈ [K − 1], sq+1 ≥ sq .

APPENDIX C
PROOF OF (15)

From (29) (i.e., the fact that (x0, . . . , xK) as defined in (27)
can be interpreted as a probability mass function), we have

(cq − qsq)(xq + xq−1) = (cq − qsq)


1−

∑

i∈[0:K]\{q−1,q}

xi


 ,

(49)

where sq is given in (43). By the Lemma 2, for any q ∈ [K−1],
sq+1 ≥ sq . Since sK ≤ 0, we have sq ≤ 0 for all q ∈ [K].
From (30), we have

sq
(
(q − 1)xq−1 + qxq

)
≥ sq


KM

N
−

∑

i∈[0:K]\{q−1,q}

ixi


 .

(50)

By summing (49) and (50) we get

cq−1xq−1 + cqxq ≥

sq
KM

N
+ cq − sq q +

∑

i∈[0:K]:i6=q−1,q

(−cq + (q − i)sq)xi.

(51)

Next, we substitute (51) into (36b) and get

R?
c,u ≥

sqKM

N
+ cq − sq q +

∑

i∈[0:K]

wq,ixi, (52)

wq,i := ci − cq + (q − i)sq. (53)

Note that when i ∈ {q, q − 1} we have wq,i = 0. It remains
to prove that for each i ∈ [0 : K] we have wq,i ≥ 0. For any
q ∈ [K] and i ∈ [0 : K − 1] we have

wq,i+1 − wq,i =
si+1

N
− sq
N
. (54)

From Lemma 2 and (54), it can be seen that for any q ∈ [K]
and i ∈ [0 : K−1], if i ≤ q−1, wq,i+1 ≤ wq,i and if i ≥ q−1,
wq,i+1 ≥ wq,i. Furthermore, wq,i = 0 for i ∈ {q, q − 1}.
Hence, for each i ∈ [0 : K], wq,i ≥ 0. As a result we have

R?
c,u ≥

(
K
q+1

)
−
(
K−min(K,N)

q+1

)
(
K
q

) + sq

(
KM

N
− q
)
, (55)

which proves bound given in (15).

APPENDIX D
PROOF OF THEOREM 5

We introduce here a novel IC achievable scheme based on
coding for the Multi-Access Channel (MAC) with correlated
messages [29], Slepian-Wolf coding [30], and non-unique
decoding [37]. At a very high level, the proposed scheme can
be described as follows, where the terminology and notation
are as in Section II-E. In the encoding stage, we generate
a sequence for each message and then generate a composite
function for each subset of sequences. In the decoding stage,
we choose a set Kj such that Dj ⊆ Kj for each user
j. From all the received composite functions and the side
information of user j, we let user j uniquely decode the
messages in Dj , non-uniquely decode the messages in Kj\Dj ,
and treat the other messages as interference. We then prove
that the rate region of the proposed scheme not only strictly
includes the region achieved by composite (index) coding
in Theorem 1 but it also strictly outperforms the improved
version of Theorem 1 from [36]. Our scheme differs from
Theorem 1 in the following aspects:

1) In the composite (index) coding scheme, decoder j ∈
[K ′] recovers uniquely the messages in Kj , while in our
proposed scheme decoder j ∈ [K ′] uniquely recovers
only the desired messages indexed by Dj and non-
uniquely the non-desired indexed by Kj\Dj . So in (11b)
the intersection is taken over all of J ⊆ K while in (39b)
the intersection is taken over all of J ⊆ K such that
D ∩ J = ∅.

2) In the composite (index) coding scheme decoder j ∈
[K ′] treats all the messages in [N ′] \ Kj as noise and
the correlation among composite indices is not consid-
ered. Thus decoder j only uses the composite indices
(WJ : J ⊆ Kj ∪Aj) to decode all the messages in Kj .
Instead, in our proposed scheme, decoder j treats all the
messages in [N ′]\Kj as interference. By leveraging the
correlation among all the composite functions, we let
decoder j cancel the interference of [N ′] \ Kj .
For instance, in Example 1 at the end of this section,
user 3 knows messages indexed by {5, 6} and demands
message 3, i.e., A3 = {5, 6} and D3 = {3}. In the
proposed scheme, which is proven to be optimal for
this example, user 3 uses all the transmitting composite
indices to recover message 3 and cancel the interference
of the messages indexed by {1, 2, 4} without decoding
those messages. However, if we use composite (index)
coding, user 3 can only use the composite indices WJ
if and only if J is a subset of K3 ∪A3, (e.g., if we set
K3 = D3 = {3}, user 3 treats all the composite indices
V1,3,4, V2,4,5 and V1,2,6 as noise; else if we set K3 ⊃ D3,
user 3 should exactly recover all messages in K3 which
includes some messages not demanded by user 3; in
both cases, the composite coding can not achieve the
converse bound). This is the main reason why composite
(index) coding is not optimal in this example and why
our proposed scheme outperforms composite coding.

Proof: To clarify the notations, we use different symbols
for transmitted messages or known messages (nothing above),
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uniquely decoded ones (hat above), and non-uniquely decoded
ones (check above).

a) Codebook Generation: Fix a probability mass func-
tion

pU1,...,UN′ (u1, . . . , uN ′) = pU1
(u1)× · · · × pUN′ (uN ′),

(56)

where each random variable Ui is defined on the finite alphabet
Ui for i ∈ [N ′], and functions

fP :
∏

i∈P
Ui → VP , ∀P ⊆ [N ′], (57)

for some finite alphabets VP for P ⊆ [N ′].
For each i ∈ [N ′], randomly and independently generate

|X |nRi sequences uni (mi) indexed by mi ∈ [|X |nRi ], each
according to

∏n
t=1 pUi

(ui,t). For each P ⊆ [N ′], let vnP :=
(vP,1, . . . , vP,n) and vP,t = fP

(
(ui,t : i ∈ P)

)
∈ VP where

t ∈ [n].
Randomly and independently assign an index g ∈ [|X |n] to

each collection of sequences (vnP : P ⊆ [N ′]) according to a
uniform probability mass function over [|X |n]. The sequences
with the same index g are said to form bin B(g). We also
indicate g = bin(vnP : P ⊆ [N ′]), the index of the bin of vnP .

The codebook so generated is revealed to all the decoders.
b) Encoding: Given messages (m1, . . . ,mN ′), the en-

coder produces (un1 (m1), . . . , unN ′(mN ′)) based on which it
computes (vnP : P ⊆ [N ′]) and eventually transmits g =
bin(vnP : P ⊆ [N ′]) to all the decoders.

c) Decoding: Fix Kj where Dj ⊆ Kj and Kj ∩Aj = ∅
for each receiver j ∈ [K ′]. Decoding proceeds in two steps.

Decoding Step 1: Since receiver j ∈ [K ′] has messages
(mi : i ∈ Aj) as side information, it also knows (uni : i ∈ Aj)
and (vnP : P ⊆ Aj). Upon receiving g = bin(vnP : P ⊆
[N ′]), receiver j ∈ [K ′] estimates the sequences (v̂nP : P ⊆
[N ′], P * Aj) as the unique sequences satisfying
(
(v̂nP : P ⊆ [N ′], P * Aj), (v

n
P : P ⊆ Aj)

)
∈ B(g); (58)

if none or more than one are found, it picks one uniformly at
random within B(g).

Decoding Step 2: Receiver j ∈ [K ′] then uses the found
(v̂nP : P ⊆ [N ′], P * Aj), and the side information to decode
all messages in Kj , but only those in Dj uniquely, that is, it
finds a unique tuple (m̂i : i ∈ Dj) and some tuple (m̌i : i ∈
Kj\Dj) such that
((
uni (mi) : i ∈ Aj

)
,
(
uni (m̂i) : i ∈ Dj

)
, (59a)

(
uni (m̌i) : i ∈ Kj\Dj

)
,
(
v̂nP : P ⊆ [N ′], P * Aj

)
,
(59b)

(
vnP : P ⊆ Aj

))
(59c)

∈ T (n)
ε

((
Ui : i ∈ Aj ∪ Kj

)
,
(
VP : P ⊆ [N ′]

))
; (59d)

if none or more than one (m̂i : i ∈ Dj) are found, it picks
one uniformly at random.

d) Error Analysis: For each decoder j ∈ [K ′] and J ⊆
Kj where J ∩ Dj 6= ∅, we define the error events in (60) at
the top of the next page.

For decoder j, the probability of error at decoder j denoted
by Pr(E(j)) can be upper bounded by

Pr
(
E(j)

)
≤ Pr(E1) (61a)

+ Pr
(
Ec1 ∩ E2,j |B(1)

)
(61b)

+
∑

J⊆Kj :J∩Dj 6=∅

Pr
(
Ej,J ∩ Ec1 ∩ Ec1,j

)
. (61c)

We now bound each term in (61). By LLN, the term in (61a)
vanishes as n→∞. Next, for the term in (61b) we have

Pr
(
Ec1 ∩ E2,j |B(1)

)
≤

∑

(un
i :i∈[N ′])

Pr
{
Un
i = uni , i ∈ [N ′]

∣∣∣
(
fP
(
(Un

i : i ∈ P)
)

: P ⊆ [N ′]
)
∈ B(1)

}
q(un

i :i∈[N ′]) (62)

where

q(un
i :i∈[N ′]) :=

Pr
{(

(v̂nP : P ⊆ [N ′] and P * Aj), (x
n
P : P ⊆ Aj)

)

∈ B(1) for some (v̂nP : P ⊆ [N ′] and P * Aj) ∈
G(un

i :i∈[N ′])

∣∣∣
(
fP
(
(Un

i : i ∈ P)
)

: P ⊆ [N ′]
)
∈ B(1),

Un
i = uni where i ∈ [N ′]

}
;

G(un
i :i∈[N ′]) :=

{
(v̂nP : P ⊆ [N ′] and P * Aj) 6=

(
fP
(
(uni : i ∈ P)

)
: P ⊆ [N ′] and P * Aj

)
:

(v̂nP : P ⊆ [N ′] and P * Aj) ∈
T (n)
ε

(
(VP : P ⊆ [N ′] and P * Aj)|(uni : i ∈ Aj)

)}
. (63)

We then focus on q(un
i :i∈[N ′]) to obtain

q(un
i :i∈[N ′]) ≤

∑

(v̂n
P :P⊆[N′] and P*Aj)∈

T
(n)
ε

(
(XP :P⊆[N ′] and P*Aj)|(un

i :i∈Aj)
)

Pr
{(

(v̂nP : P ⊆ [N ′],P * Aj), (x
n
P : P ⊆ Aj)

)
∈ B(1)

∣∣∣
(
fP
(
(Un

i : i ∈ P)
)

: P ⊆ [N ′]
)
∈ B(1), Un

i = uni ∀i ∈ [N ′]
}

≤ |X |n
[
H
(
(VP : P ⊆ [N ′],P * Aj)|(Ui : i ∈ Aj)

)]
|X |−n.

(64)

From (62) and (64) we can see that the term in (61a) vanishes
provided that

H
(
(VP : P ⊆ [N ′] and P * Aj)|(Ui : i ∈ Aj)

)
< 1. (65)

Finally, for the term in (61c) also vanishes, provided that (by
the packing lemma [31, Lemma 3.1])
∑

i∈J
Ri < I

(
(Ui : i ∈ J ); (VP : P ⊆ [N ′] and (66)

P * Kj ∪ Aj \ J ), (Ui : i ∈ Kj ∪ Aj \ J )
)

(67)

= I
(
(Ui :∈ J ); (VP : P ⊆ [N ′] and

P * Kj ∪ Aj \ J )|(Ui : i ∈ Kj ∪ Aj \ J )
)
. (68)
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E1 :=
{(

(Un
i (Mi) : i ∈ [N ′]), (V n

P : P ⊆ [N ′])
)
/∈ T (n)

ε

(
(Ui : i ∈ [N ′]), (V n

P : P ⊆ [N ′])
)}
, (60a)

E2,j :=
{

there exists (v̂nP : P ⊆ [N ′] and P * Aj) ∈ T (n)
ε

(
(VP : P ⊆ [N ′] and P * Aj)|(Un

i : i ∈ Aj)
)

such that
(
(v̂nP : P ⊆ [N ′] and P * Aj), (V

n
P : P ⊆ Aj)

)
∈ B(G) and (v̂nP : P ⊆ [N ′]

and P * Aj) 6= (V n
P : P ⊆ [N ′] and P * Aj)

}
, where G is the random index of g, (60b)

Ej,J :=
{

there exists m̂i 6= Mi where i ∈ J such that
(
(Un

i (Mi) : i ∈ Kj ∪ Aj \ J ), (Un
i (m̂i) : i ∈ J ),

(V n
P : P ⊆ [N ′])

)
∈ T (n)

ε

(
(Ui : i ∈ Kj ∪ Aj), (VP : P ⊆ [N ′])

)}
. (60c)

The inequalities in (65) and in (66) are strict; however, by
the same argument in the composite-coding achievable region
in [28, Proposition 6.11] they can be relaxed to be nonstrict.

Remark 2. The work in [36] improves on the composite
(index) coding scheme in Theorem 1 by splitting each message
into non-overlapping and independent sub-message

Mi =
(
Mi

(
(K1, . . . ,KK′)

)
: Kk ⊆ [N ′] \ Ak, for k ∈ [K ′]

)
.

Composite (index) coding is then used to transmit each group
of sub-messages, {Mi

(
(K1, . . . ,KK′)

)
: i ∈ [N ′]}. A draw-

back of this scheme is that the number of auxiliary variable
increases exponentially with the number of users.

We could also use this message-splitting idea to improve
our achievable region in Theorem 5. If we did so, then the
improved version of Theorem 5 would include the improved
version of Theorem 1. This message-splitting improvement
is quite straightforward and not pursued here. We note that
the improvement in performance comes at the expense of a
much heaver notation, and–more importantly–a much larger
computation burden to evaluate a regions that is already
combinatorial in nature.

We would like to stress that our main objective here is to
propose a general IC achievable scheme that can achieve the
converse bound for the caching problem under the constraint
of uncoded cache placement, and at the same time improves on
the composite (index) coding. To the best of our knowledge,
such general scheme does not exist in the literature. Corol-
lary 1 and of Theorem 5 show that the current achievable
bound in Theorem 5 is sufficient to achieve our objective.
In addition, in some special cases such as in the following
Example 1, we show that even if we do not use rate splitting,
our proposed achievable bound is strictly better than the the
message-split region in [36, SectionIII-B].

Example 1. Consider a multiple unicast IC problem with
K ′ = 6 messages and with

D1 = {1}, A1 = {3, 4},
D2 = {2}, A2 = {4, 5},
D3 = {3}, A3 = {5, 6},
D4 = {4}, A4 = {2, 3, 6},
D5 = {5}, A5 = {1, 4, 6},
D6 = {6}, A6 = {1, 2}.

Composite (Index) Coding Achievable Bound: In [36,
Example 1] the authors showed that the largest symmetric
rate with the composite (index) coding achievable bound in
Theorem 1 for this problem is Rsym,cc = 0.2963. It the same
paper, the authors proposed an extension of the composite
(index) coding idea (see [36, Section III.B]) and showed that
this extended scheme for this problem gives Rsym,cc,enhanced =
0.2987.

Converse: Give message M5 as additional side infor-
mation to receiver 1 so that the new side information set
satisfied {3, 4, 5} ⊆ A1. With this side information, in addition
to message 1, receiver 1 can decode message 2 and then
message 6 for a total of 3 messages. Thus

3Rsym ≤ lim
n→∞

1

n
H(Xn) ≤ 1, (69)

where Rsym denotes the symmetric rate. Next we show that
Rsym ≤ 1/3 is tight. This shows the strict sub-optimality of
composite (index) coding and its message-split extension.

Achievability: It is not difficult to see that all users can
be satisfied by the transmission of the three coded messages
X = (M1 ⊕M3 ⊕M4, M2 ⊕M4 ⊕M5, M1 ⊕M2 ⊕M6).

We now map this scheme into a choice of auxiliary random
variables in our novel IC scheme in Theorem 5. Let Kj = Dj

for j ∈ [6], and

U1 = M1, U2 = M2, · · · , U6 = M6,

for all P ⊆ [6] set VP = 0 except for the following
V{1,3,4} = U1 ⊕ U3 ⊕ U4,

V{2,4,5} = U2 ⊕ U4 ⊕ U5,

V{1,2,6} = U1 ⊕ U2 ⊕ U6,

Hence, V = (V{1,3,4}, V{2,4,5}, V{1,2,6}). From (39b), we have
that for example the rate bound corresponding to receiver 5 is

Rsym < I(U5;V|U1, U4, U6)

= I(U5;U3, U2 ⊕ U5, U2) = I(U5;U2, U3, U5) = I(U5;U5)

= H(U5) = 1/3,

and similarly for all the other users. As a result, any Rsym <
1/3 is achievable by the proposed scheme based on random
coding argument; by repeating the same argument with random
linear codes, Rsym ≤ 1/3 is achievable and coincides with the
converse bound. �
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APPENDIX E
PROOF OF COROLLARY 1

In general, for a set B ⊆ [N ′] and for the auxiliary random
variables as defined in Theorem 5, we have

H
(
(VP : P ⊆ [N ′])

∣∣(Ui : i ∈ B)
)

≤ H
(
(VP : P ⊆ [N ′],P 6⊆ B)

)

≤
∑

P:P⊆[N ′],P6⊆B

H
(
VP
)

≤
∑

P:P⊆[N ′],P6⊆B

SP , where SP = log|X |(|VP |). (70)

In the following, we assume |X | is large enough such that
{log2(|X |)SP : P ⊆ [N ′]} are integers; this is so because the
cardinality of the input alphabet does not affect the capacity
region as argued in Remark 1. We choose the auxiliary random
variables (Ui : i ∈ [N ′]) and (VP : P ⊆ [N ′]) such that
all the inequality leading to (70) holds with equality for any
B ⊆ [N ′], that is, we construct random variables (VP : P ⊆
[N ′]) that are independent and uniformly distributed, where
the alphabet of VP has support of size |VP | = |X |SP =
2log2(|X |)SP . With this choice of auxiliary random variables
we show that Theorem 5 reduces to Theorem 1.

More precisely, let Ui, for i ∈ [N ′], be an independent and
equally likely binary vector of length Li. For all P ⊆ [N ′],
let VP be a binary vector of length log2(|X |)SP obtained as
a linear code for the collection of bits in (Ui : i ∈ P). We let
Li =

∑
P⊆[N ′]:i∈P log2(|X |)SP for all i ∈ [N ′], and divide

the Li bits in Ui into 2N
′−1 non-overlapping parts, where

Ui = (Ui,P : P ⊆ [N ′] : i ∈ P) and |Ui,P | = log2(|X |)SP .
For each P ⊆ [N ′] where |P| > 0, we let

VP = ⊕
i∈P

Ui,P . (71)

Now let us focus on a set B ⊆ [N ′]. We have

H
(
(VP : P ⊆ [N ′])

∣∣(Ui : i ∈ B)
)

= H
(
(VP : P ⊆ [N ′],P 6⊆ B

∣∣(Ui : i ∈ B)
)

=
∑

j∈[2N′−2|B|]

H
(
VP(B,j)

∣∣(Ui : i ∈ B), VP(B,1), . . . , VP(B,j−1)

)
,

(72)

where we randomly order the sets P ⊆ [N ′] where P 6⊆ B, and
we denote them by P(B, 1),P(B, 2), . . . ,P(B, 2N ′−2|B|). We
focus on one j ∈

[
2N
′ − 2|B|

]
,

H
(
VP(B,j)

∣∣(Ui : i ∈ B), VP(B,1), . . . , VP(B,j−1)

)

≥ H
(
VP(B,j)

∣∣(Ui : i ∈ B), (Ui,P(B,1) : i ∈ P(B, 1)), . . . ,

(Ui,P(B,j−1) : i ∈ P(B, j − 1))
)

= H
(
VP(B,j)|(Ui : i ∈ B)

)
(73a)

= H
(
VP(B,j)

)
(73b)

= log|X |
(
2log2(|X |)SP(B,j)

)
(73c)

= SP(B,j), (73d)

where (73a) follows from the fact that VP(B,j) is independent
of (Ui,P(B,1) : i ∈ P(B, 1)), . . . , (Ui,P(B,j−1) : i ∈ P(B, j −
1))
)
, (73b) from that P(B, j) 6⊆ B, (73c) from that the

bits in VP(B,j) are i.i.d.. From (73b), (72) and (70), by our
construction we can achieve

H
(
(VP : P ⊆ [N ′])

∣∣(Ui : i ∈ B)
)

=
∑

P:P⊆[N ′],P6⊆B

SP . (74)

As a result, we have that the bound in (39f) reduces to the
one in (11d) by using (74) with B = Aj , and that the bound
in (39c) reduces to the one in (11c) by using (74) twice, once
with B = A ∪K \ J and once with B = A ∪K, which is so
because

κJ =
∑

P:P⊆[N ′]:P6⊆(A∪K\J )

SP −
∑

P:P⊆[N ′]:P6⊆(A∪K)

SP (75)

=
∑

P:P⊆A∪K:P∩J 6=∅

SP . (76)

This concludes the proof.
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