G. Abdelrahman and Q. Wang, Knowledge Tracing with Sequential Key-Value Memory Networks, Proceedings of the 42nd International ACM Conference on Research and Development in Information Retrieval (SIGIR), pp.175-184, 2019.

E. Abubaker, L. Ahmad, and C. L. , The human behaviour indicator: A measure of behavioural evolution, Expert Syst Appl, vol.118, pp.493-505, 2019.

A. Masood, K. Noman, A. Mohammad, A. Taqdir, A. et al., Context Representation and Fusion: Advancements and Opportunities, Sensors, vol.14, issue.6, pp.9628-9668, 2014.

B. Aysenur, H. Hani, . Joy-van-h, and A. Daniyal, A Linear General Type-2 Fuzzy-Logic-Based Computing With Words Approach for Realizing an Ambient Intelligent Platform for Cooking Recipe Recommendation, IEEE Trans Fuzzy Syst, vol.24, issue.2, pp.306-329, 2016.

I. H. Bae, An ontology-based approach to ADL recognition in smart homes, Future Gener Comput Syst, vol.33, pp.32-41, 2014.

F. Bobillo and U. Straccia, The fuzzy ontology reasoner fuzzyDL, Knowl-Based Syst, vol.95, pp.12-34, 2016.

S. Das, P. K. Ghosh, and S. Kar, Hypertension diagnosis: A comparative study using fuzzy expert system and neuro fuzzy system, Proceedings of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp.1-7, 2013.

P. Debajyoti, T. Tuul, F. Suree, and C. Wichian, Smart Homes and Quality of Life for the Elderly: Perspective of Competing Models, IEEE Access, vol.6, pp.8109-8122, 2018.

D. J. , A. S. , B. L. Narayanan, and C. , Casas: A smart home in a box, IEEE Comput, vol.46, pp.62-69, 2013.

M. Dong and D. He, A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology, Mech Syst Signal Process, vol.21, issue.5, pp.2248-2266, 2007.

L. Elena, M. Q. Francesco, S. Demetris, and V. , The e?ect of digital technologies adoption in healthcare industry: a case based analysis, Bus Process Manag J, vol.24, issue.5, pp.1124-1144, 2018.

S. Ferilli, A smart home agent for plan recognition of cognitively-impaired patients, IEEE Trans Syst Man Cybern Syst, vol.44, issue.6, pp.744-756, 2014.

G. Francesco, S. Stefano, and C. Mario, Exploit Hierarchical Label Knowledge for Deep Learning, 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), pp.539-542, 2019.

K. Gayathri, K. Easwarakumar, and S. Elias, Probabilistic ontology based activity recognition in smart homes using Markov Logic Network, Knowl-Based Syst, vol.121, pp.173-184, 2017.

M. Georgios and K. Ioannis, iKnow: Ontology-driven situational awareness for the recognition of activities of daily living, Pervasive Mob Comput, vol.40, pp.17-41, 2017.

R. Hill, L. R. Betts, and S. E. Gardner, Older adults experiences and perceptions of digital technology: (Dis)empowerment, wellbeing, and inclusion, Comput Hum Behav, vol.48, pp.415-423, 2015.

H. S. Hossain, M. Khan, and N. Roy, Active learning enabled activity recognition, Pervasive Mob Comput, vol.38, pp.312-330, 2017.

A. Hussein, M. Adda, M. Atieh, and W. Fahs, Smart home design for disabled people based on neural networks, Procedia Comput Sci, vol.37, pp.117-126, 2014.

M. H. Kabir, M. R. Hoque, K. Thapa, and S. H. Yang, Two-layer hidden Markov model for human activity recognition in home environments, Int J Distrib Sens Netw, vol.12, issue.1, p.4560365, 2016.

Y. Kim, B. Kang, and D. Kim, Hidden Markov Model Ensemble for Activity Recognition Using Tri-Axis Accelerometer, Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, pp.3036-3041, 2015.

M. H. Kolekar and D. P. Dash, Hidden Markov Model based human activity recognition using shape and optical flow based features, Proceedings of the 2016 IEEE Region 10 Conference (TENCON), pp.393-397, 2016.

W. Kong, Z. Y. Dong, D. J. Hill, J. Ma, J. H. Zhao et al., A Hierarchical Hidden Markov Model Framework for Home Appliance Modeling, IEEE Trans Smart Grid, vol.9, issue.4, pp.3079-3090, 2018.

Z. Liouane, T. Lemlouma, P. Roose, F. Weis, and H. Messaoud, A genetic neural network approach for unusual behavior prediction in smart home, International Conference on Intelligent Systems Design and Applications, pp.738-748, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01462993

Z. Liouane, T. Lemlouma, P. Roose, F. Weis, and H. Messaoud, A Markovian-Based Approach for Daily Living Activities Recognition, Proceedings of the 5th International Confererence on Sensor Networks (SENSORNETS), pp.214-219, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280001

Z. Liouane, T. Lemlouma, P. Roose, F. Weis, and H. Messaoud, An improved elman neural network for daily living activities recognition, International Conference on Intelligent Systems Design and Applications, pp.697-707, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01462982

Z. Liouane, T. Lemlouma, P. Roose, F. Weis, and H. Messaoud, An Improved Extreme Learning Machine Model for the Prediction of Human Scenarios in Smart Homes, J Appl Intell, vol.48, pp.2017-2030, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01678671

Y. Liu, L. Nie, L. Liu, and D. S. Rosenblum, From action to activity: sensor-based activity recognition, Neurocomputing, vol.181, pp.108-115, 2016.

Z. Liu, Y. Song, Y. Shang, and J. Wang, Posture recognition algorithm for the elderly based on BP neural networks, Proceedings of the 27th Chinese Control and Decision Conference (CCDC), pp.1446-1449, 2015.

M. Kazemi, B. , M. Kazemi, B. Seyed, and A. Re, Introduce an objectoriented simulator for analyzing discrete events in smart buildings, International Congress on Technology, Communication and Knowledge (ICTCK), pp.1-5, 2014.

H. Mcdonald, C. D. Nugent, D. D. Finlay, G. Moore, W. Burns et al., Assessing the Impact of the homeML Format and the homeML Suite within the Research Community, J Ucs, vol.19, issue.17, pp.2559-2576, 2013.

H. Mshali, T. Lemlouma, and D. Magoni, Adaptive monitoring system for e-health smart homes, Pervasive Mob Comput, vol.43, pp.1-19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01646731

M. Mahtab, A. Hassan, M. , M. Islam, K. et al., A Survey on the Roles of Communication Technologies in IoT-Based Personalized Healthcare Applications, IEEE Access, vol.6, pp.36611-36631, 2018.

M. Noor, Z. Salcic, K. I. Wang, and K. , Ontology-based sensor fusion activity recognition, J Ambient Intell Humaniz Comput, pp.1-15, 2018.

R. Parisa and A. M. , A Survey on Ambient-Assisted Living Tools for Older Adults, IEEE J Biomed Health Informatics, vol.17, issue.3, pp.579-590, 2013.

M. S. Rahman, M. Ko, J. Warren, and D. Carpenter, Healthcare Technology Self-E cacy (HTSE) and its influence on individual attitude: An empirical study, Comput Hum Behav, vol.58, pp.12-24, 2016.

N. D. Rodríguez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-flores, A survey on ontologies for human behavior recognition, ACM Comput Surv, vol.46, issue.4, p.43, 2014.

C. A. Ronao and S. B. Cho, Recognizing human activities from smartphone sensors using hierarchical continuous hidden Markov models, Int J Distrib Sens Netw, vol.13, issue.1, p.1550147716683687, 2017.

S. Wada, Y. , A. L. Mufti, and M. , A Consensus Novelty Detection Ensemble Approach for Anomaly Detection in Activities of Daily Living, Appl Soft Comput, vol.83, p.105613, 2019.

M. J. Sanjari, H. Karami, and H. B. Gooi, Analytical Rule-Based Approach to Online Optimal Control of Smart Residential Energy System, IEEE Trans Ind Informatics, vol.13, issue.4, pp.1586-1597, 2017.

N. K. Suryadevara, S. C. Mukhopadhyay, R. Wang, and R. Rayudu, Forecasting the behavior of an elderly using wireless sensors data in a smart home, Eng Appl Artif Intell, vol.26, issue.10, pp.2641-2652, 2013.

T. Minh, T. , N. Huu, T. , N. et al., Key-value based data hiding method for NoSQL database, 10th International Conference on Knowledge and Systems Engineering (KSE), pp.193-197, 2018.

G. S. Thanos, K. Efstratios, B. Nick, A. John, B. Antonis et al., Rule-based approaches for energy savings in an ambient intelligence environment, Pervasive Mob Comput, vol.19, pp.1-23, 2015.

, United Nations (2019) World Population Ageing, 2019.

B. Valentina, B. Marco, L. Gianfranco, P. F. Monica, M. Ilaria et al., IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment, IEEE Internet Thing J, vol.6, issue.5, pp.8553-8562, 2019.

C. Wang, Y. Xu, J. Zhang, and W. Yu, SW-HMM: A Method for Evaluating Confidence of Smartphone-Based Activity Recognition, Proceedings of the 2016 IEEE Trustcom/BigDataSE/ISPA, pp.2086-2091, 2016.

Z. E. Wemlinger and L. B. Holder, Cross-environment activity recognition using a shared semantic vocabulary, Pervasive Mob Comput, vol.51, pp.150-159, 2018.

J. Wen and Z. Wang, Learning general model for activity recognition with limited labelled data, Expert Syst Appl, vol.74, pp.19-28, 2017.

A. Wickramasinghe, R. Torres, and D. C. Ranasinghe, Recognition of falls using dense sensing in an ambient assisted living environment, Pervasive Mob Comput, vol.34, pp.14-24, 2017.

E. Wu, P. Zhang, T. Lu, H. Gu, and N. Gu, Behavior prediction using an improved Hidden Markov Model to support people with disabilities in smart homes, Proceedings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp.560-565, 2016.

J. Ye, G. Stevenson, and S. Dobson, USMART: An unsupervised semantic mining activity recognition technique, ACM Trans Interact Intell Syst, vol.4, issue.4, p.16, 2015.

L. Yiyan, Z. Fang, S. Wenhua, and L. Haiyong, An hidden Markov model based complex walking pattern recognition algorithm, Proceedings of the 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), pp.223-229, 2016.

S. Yu, H. Chen, and R. A. Brown, Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring, IEEE J Biomed Health Inform, vol.22, issue.6, pp.1847-1853, 2018.

B. Yuan and J. Herbert, Context-aware hybrid reasoning framework for pervasive healthcare, Pers Ubiquitous Comput, vol.18, issue.4, pp.865-881, 2014.