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Abstract—This paper aims to present a fault-tolerant control
architecture based on the Multiple Model Adaptive Control
(MMAC). The approach decouples the development of a bank of
local controllers together with the estimation process consisting
of a bank of estimators from the switching logic. A major
contribution is the presentation of a promising framework based
on µ-analysis for the stability analysis of the global control
law. This analysis technique provides under certain assumptions,
a domain of candidate controller combinations where stability
robustness is guaranteed. Afterwards, the paper focuses on
supervisory unit tuning. A key proposal is to use Luenberger
observers and link their designs using Linear Matrix Inequality
(LMI) with an online validity computation following a Bayesian
law. A systematic strategy involving stability analysis through
characteristic criterion to be minimized is described. The via-
bility of the design methodology is illustrated for the inverted
pendulum on a cart subject to parametric variations. Results
demonstrate the successful stability and performance of the
proposed Estimator-based MMAC.

Index Terms—multiple model adaptive control, fault-tolerant
control, stability analysis

I. INTRODUCTION

Based on the problem decomposition strategy, the multiple
models approach provides a powerful solution to many prob-
lems dealing with complex real-life processes. The Multiple
Models Adaptive Control method noted MMAC assumes that
the system to be controlled can be represented by a finite
number of sub-models valid under certain operating domains.
Some controllers are respectively designed for each model
and a selection logic decides at each moment which con-
troller(s) should be involved for the real system. MMAC is
a widely used control strategy in the context of reconfigurable
control or fault tolerance control, such as in [1], [2], [3]
where applications to flight control are presented. In such
circumstances, each local model describes a particular fault
scenario or operating condition.

Basically, MMAC architecture is divided into two au-
tonomous entities. Firstly, the control process is consisting of
a bank of non-adaptive controllers designed for each model.
The controllers’ design and the model distribution are not in
the scope of the study and will therefore not be discussed (see
for example [4], [5]). Secondly, the other entity that is the core
of this paper is the adaptive mechanism. Typically, a bank of
observers can be Luenberger or Kalman for instance is used,
and the selection logic makes use of the monitoring outputs
estimation errors.

In supervisory switching multiple model methods [6], [7],
[8], the basic idea is to use the monitoring signals to select the
most suitable candidate model and implement the associated
controller in the feedback loop. In contrast to this binary
mode of the switching logic, other methods (reported in [9])
compute the control signal following a probability-weighted
average of each local controller outputs. These probabilities
called validities can be computed recursively by a Posterior
Probability Evaluator (PPE) according to a Bayesian law that
is used in this paper.

Despite the maturity of the approach and its many successful
applications, the key challenges lie in developing a stability
analysis framework and synthesis method. In the context of
switching MMAC, several works [10], [11], [12] propose
exciting results about the stability but they remain specific
to the particular approached described therein. Research that
addresses both stability and performance robustness refers to
the so-called Robust MMAC [13], [14]. These techniques
employ the Multiple Model Adaptive Estimation (MMAE)
consisting of a bank of Kalman filters for which it is essential
to set it up properly. Considering a carefully chosen design,
[15] provides interesting stability analysis for RMMAC but
specific to Kalman filtering. Considering the blending of the
controllers’ outputs, very little stability analysis is available in
the literature to date.

In this work, it is proposed to adopt a general approach
by considering a set of nominal model-controller pairs, Lu-
enberger estimators and a Bayesian validity calculation. The
procedure is based on the study of a set of Linear Time-
Invariant (LTI) systems assumed to be known for which it is
necessary to find the associated closed-loop stability domain
of the validities computed via the PPE. A key contribution of
this paper is to present a stability analysis framework. Another
important proposal is a methodology based on a modified
Bayesian law, which allows tuning both estimators and PPE
with respect to global stability considerations.

This paper is organized as follows: section II presents the
Estimator-based MMAC and the stability analysis framework
of MMAC is described in section III. The subject of section
IV is the introduction of the characteristic criterion and the
estimation process tuning formulation. Simulation results to
prove the usefulness of the approach are given in section V
and section VI concludes and offers some forthcoming works.



II. MULTIPLE MODELS ADAPTIVE CONTROL (MMAC)
METHOD

A. MMAC architecture

The multiple models approach is an adaptive control tech-
nique to deal with systems with large parametric uncertainties
or with a strong nonlinear behaviour. The problem under
consideration is that a single fixed controller cannot stabi-
lize all possible configurations and meet some performance
requirements. The plants are described by a combination of
local models linearized around operating points where each
model is valid in a particular region.

Consider a plant model G subject to parameter variations
θ ∈ Rnθ taking values over a compact set Ω ⊂ Rnθ . It is
assumed that G is a linear Multiple-Inputs-Multiple-Outputs
(MIMO) plant model of the form:

G(θ) :=

{
ẋ(t) = Aθx(t) +Bθu(t)
y(t) = Cθx(t)

(1)

where x(t) ∈ Rnx denotes the state of the system, u(t) ∈ Rnu
is the vector of control inputs and y(t) ∈ Rny is the vector of
measured outputs.

Assumption 1: The matrices Aθ, Bθ and Cθ are assumed to
depend on piecewise varying unknown parameters θ.

First let’s suppose that N models are necessary to cover the
uncertainty set of the real plant. Considering a finite set of can-
didate parameter values Θ := {θ1,..., θN}, for each nominal
configuration θi ∈ Θ, i = {1,..., N} a corresponding nominal
model is obtained Mi := {Ai, Bi, Ci} where Mi := G(θi),
Ai := Aθi and the same notation applies for Bi and Ci.

Once a bank of models has been obtained, a bank of
controllers can be associated with it. For each ith local model,
a local controller is designed to guarantee local stability and
performance robustness. The bank of controllers is composed
of N controllers Ki which have the following state-space
representations:

Ki :=

{
ẋKi (t) = AKi x

K
i (t) +BKi (r(t)− y(t))

ui(t) = CKi x
K
i (t) +DK

i (r(t)− y(t))
(2)

where r(t) ∈ Rny is the reference to be tracked. These
controllers are partially combined together to form the global
control law. The final control signal for the real plant is a
weighted sum of the outputs of each local controller:

u(t) =

N∑
i=1

wi(t)ui(t) (3)

where wi(t) is the validity reflecting the relative importance of
each ith model compared to the real plant. Suitable validities
are assigned based on the probabilities such that less prob-
able models are associated to smaller weights. This ensures
that designed controllers for less probable models have less
influence on the resulting control value. The validity vector
W ∈ RN have the following convex property:

N∑
i=1

wi(t) = 1 , 0 ≤ wi(t) ≤ 1 ∀i ∈ {1,..., N} (4)

The next step in the approach is to determine a bank
of estimators consisting of N estimators Ei that generate
estimated system outputs ŷi(t) for each nominal model Mi

based on the measured control inputs u(t) and outputs y(t) of
the real plant. These estimates will provide the basis for the
validities computation.

Fig.1 presents a general MMAC where Ŷ =
[
ŷ1 · · · ŷN

]T
is the concatenation of the estimated outputs from the bank of
estimators and U =

[
u1 · · · uN

]T
are the outputs of the bank

of controllers.

K1

...

KN

N∑
i=1

wiui G

E1

...

EN
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ŶW

r

Fig. 1. MMAC method

The last and one of the most essential aspects of the MMAC
is the methodology to determine the validity associated with
each controller for the evaluation of the actual control signals.
This logic must identify which controllers must be involved
in the control loop and their contributions depending on the
real value of parameter θ that is supposed to be non measured.
The validity calculation is based on the distance between the
system output and those of the different estimators defined in
the bank. This distance called residual or estimation error is
therefore defined for the ith model as:

εi(t) = y(t)− ŷi(t) (5)

The normalized validity is calculated online at each time
sample index k ∈ N by the Posterior Probability Evaluator
(PPE) using the following recursive update:

wi(k + 1) =
exp(− 1

2ε
T
i (k)Γiεi(k))wi(k)∑N

j=1 exp(− 1
2ε
T
j (k)Γjεj(k))wj(k)

(6)

Validities is leading by a Bayesian validity formula (see
[9],[16]) where Γi is a time-invariant weighting matrix to
be set. These matrices play an important role in tuning the
convergence rate of probabilities wi(k).

Remark 1: In practice, to keep models alive, a threshold δ
is used. The probabilities are bounded to this value and not
allowed to go to zero. At last, the weights are normalized by
excluding the models having reached the threshold.

B. Proposed Estimator-based MMAC

For each nominal model Mi, i ∈ {1,..., N}, the estimated
outputs ŷi is obtained with the help of the following well-know



Luenberger observer Ei of the form:

Ei :=

{
ẋi(t) = Aix̂i(t) +Biu(t) + Li(y(t)− ŷi(t))
ŷi(t) = Cix̂i(t)

(7)
where x̂i(t) ∈ Rnx is the estimated state of the ith local model,
u(t) ∈ Rnu is the vector of control inputs, ŷi(t) ∈ Rny is the
vector of estimated outputs and Li the observer gain to be
determined.

For the system matching nominal model Mi, the associated
estimation error εi = x− x̂i have the following dynamics:

ε̇i(t) = (Ai − LiCi)εi(t) (8)

The gains Li are designed to ensure the estimation error
will tend to zero for any initial conditions.

A way to proceed, is to ensure exponential convergence
of the estimation error via α-stability of the observer. The
following classical result [17] provides sufficient conditions
to guarantee a convergence rate of the estimation error via a
decay rate.

Lemma 1: Consider the system matching nominal model
Mi, and the associated observer Ei, if there exist a matrix
Pi = PTi > 0, a matrix Ri and a scalar αi > 0 such that

ATi Pi + PiAi − CTi RTi −RiCi + αiPi < 0 (9)

then the observer gain Li = P−1
i Ri guarantees a global

and exponential decrease of the estimation error εi with a
minimum characterized decay rate αi.

In contrast with the pole placement method, the convergence
rate of the Lyapunov function αi, appears to be the unique
design term to adjust and improve the observer’s dynamic
performance.

A common way to robustify observers is to consider an
augmented model as long as the system remains detectable.
The augmented state then contains the state of the system
and possible disturbance (stochastic or not), assumed to be
piecewise continuous. This well-known technique [18] will
improve the reliability of the estimators and thus the MMAC.

In the MMAE framework, Kalman filters tuning are linked
with the PPE dynamic [13], [15] via innovation covariance
matrices. With a similar mechanism, it is proposed in this
paper to use the Luenberger observer tuning to drive the
Bayesian logic of PPE.

Using the innovation terms, validities are recursively up-
dated using a convergence matrix Γi = LTi Li and equation
(6) becomes:

wi(k + 1) =
exp(− 1

2ε
T
i (k)LTi Liεi(k))wi(k)∑N

j=1 exp(− 1
2ε
T
j (k)LTj Ljεj(k))wj(k)

(10)

Thus, observers and PPE stand for a single entity whose
only parameter settings are the imposed dynamics of esti-
mation errors depending on αi, i ∈ {1,..., N}. The carefully
chosen parameters αi will be fundamental to the closed-loop
stability for which a systematic strategy will be described.

III. CLOSED-LOOP STABILITY DOMAIN

In order to review the feasibility and interest of the ap-
proach, models, controllers, as well as the system, are sup-
posed linear or linearized. According to this assumption, the
online weight calculation is the only element with nonlinear
dynamics. In this MMAC stability analysis framework, validity
weights dynamics are not taken into account. The study
focuses on weights that may not exactly match with those
of the real system because of their estimation through PPE.
Weights are assumed to be piecewise constant, allowing the
use of classical stability analysis methods such as µ-analysis
with a certain limitation. The results are more optimist than in
comparison with assumed varying weights, so they should be
treated with caution. Nevertheless, the conclusions constitute
a guideline for the stability analysis.

It is important to note that µ-analysis is a general frame-
work. An easily conceivable extension of the method is to
consider additional complex uncertainties to take into ac-
count stability margin robustness, performance robustness or
neglected dynamics. Besides, a way to reduce the method’s
limitation could be to consider weight dynamics as neglected
ones in the robustness analysis.

The following hypothesis is made.
Assumption 2: The parameter θ of the real plant G(θ) de-

scribed by (1) exactly matches one of the candidate parameter
values Θ = {θ1,..., θN}.
According to this assumption, the goal is to analyse the closed-
loop behaviour for the case where plant G(θ) matches one of
the processes Mi, i ∈ {1,..., N}. The analysis is performed
for each parameter θ ∈ Θ and can be easily automated.
This section aims to provide an estimation set of validities
combinations for which the system remains stable.

Remark 2: For sake of simplicity in the notations, only
the matchings with the presented systems in the bank of
models are considered, although a generalization to Ñ con-
figuration is conceivable. An analysis is carried out for each
plant G(θ) matching one candidate parameter value in the
set Θ̃ := {θ̃1,..., θ̃N} that may contain cross-configuration
between the nominal ones.

A. Analysis framework

For a given system G(θ) depending on a fixed parameter
θ ∈ Θ, the only uncertainties that should be considered are
the weights provided by the PPE. The objective of this section
is to represent the system and its uncertainties in Linear
Fractional Transformation (LFT) with structured uncertainties
(the uncertainty matrix being diagonal) for the µ-analysis [19].

To analyse the stability robustness, a common way to
proceed is to choose a parametrization ρ of uncertainties.
The uncertain weights can be parametrized with a nominal
value and a range of possible variations following ρ =
(w0

1,..., w
0
N−1

, w1
1,..., w

1
N−1

). The ith validity wi is therefore
considered around a central value w0

i and can take values from
w0
i − w1

i to w0
i + w1

i . By respecting the convex property of



equation (4) and from the parametrization ρ, the uncertain
values of weights can be obtained as:{

wi = w0
i + w1

i δwi ∀i ∈ {1,..., N−1}
w0
N = 1−

∑N−1
i=1 w0

i

(11)

where w1
i ≤ min(w0

i , 1 − w0
i ) ensures that the weights are

bounded (4) with −1 ≤ δwi ≤ 1. The choice of nominal
values for the parametrization will be discussed in the next
section.

A general representation of a system subject to uncertainties
is given in Fig. 2 where s is the Laplace variable. All model
uncertainties are gathered in the ∆(s) matrix, the transfer
matrix Mθ(s, ρ) which in the case of a controlled system
obviously depends on the bank of controllers but also depends
on the given parameter values θ ∈ Θ and the coefficients
ρ chosen for the parametrization. Mθ(s, ρ) is supposed to
be stable and models the internal interconnections with the
uncertainty block through v and z.

∆(s)

Mθ(s, ρ)

v z

Fig. 2. LFT considered for stability robustness analysis

Considering the uncertainties of the weights, the system has
the following dynamics:

ẋ = Aθx+Bθ

N∑
i=1

wiui = Aθx+Bθ

N∑
i=1

w0
i ui +Bθ

N∑
i=1

w1
i δwiui

(12)
A LFT form of MMAC (Fig. 1) in the general represen-
tation (Fig. 2) is proposed for the chosen parametrization
ρ = (w0

i , w
1
i ), i ∈ {1,..., N−1} with a zero reference signal

and v = ∆(s)z:

Mθ(ρ) :=

{
˙̃x = Ãθx̃+ B̃θv

z = C̃θx̃
(13)

with x̃ =
[
x xK1 · · · xKN

]T
, v =

[
v1 · · · vN−1

]T
,

z =
[
z1 · · · zN−1

]T
,

Ãθ =


Aθ −Bθ(

N∑
i=1

w0
iD

K
i )Cθ Bθw

0
1C

K
1 · · · Bθw

0
NC

K
N

−BK1 Cθ AK1 0 0
... 0

. . . 0
−BKNCθ 0 0 AKN



B̃θ =

Bθw
1
1 · · · Bθw

1
N−1

0 0 0
0 0 0
0 0 0



C̃θ =

 −(DK
1 −DK

N )Cθ CK1 0 0 −CKN
... 0

. . . 0
...

−(DK
N−1

−DK
N )Cθ 0 0 CK

N−1
−CKN



∆(s) =

δw1 0 0

0
. . . 0

0 0 δw
N−1


B. µ-analysis

In the general case, the set ∆ of structured complex matrices
with a block diagonal structure is defined as:

∆ :=

{
∆ = diag{∆1, ... ,∆q, δ1Ir1 , ... , δrIrr , ε1Ic1 , ... , εcIcc}

∆i ∈ Cki∗ki ; δi ∈ R ; εi ∈ C

}
(14)

The singular value of Mθ(s, ρ) denoted M relative to the set
∆ is defined by:

µ∆(M) :=

(
inf

∆∈∆
(σ(δ) : det(I −∆P ) = 0

)−1

(15)

if (Ik−∆P ) is not singular for any ∆ ∈ ∆, then µ∆(M) := 0.
The definition of µ∆(M) leads to the generalized small gain
theorem ([20] and [19]). This theorem is the core of the
robustness analysis based on the structured singular value and
called µ-analysis.

If M(s) is stable the closed-loop system of figure 2 is in-
ternally stable for any stable structured uncertainty ∆(s) ∈ ∆
such as ‖∆(s)‖∞ < γ if and only if

∀ω µ∆(M(jω)) ≤ γ−1 (16)

The idea here is to calculate the structured singular value
and based on the small gain theorem to deduce the ranges of
uncertainties for which the closed-loop system remains stable.
The µ-analysis thus gives the largest hypercube centered on
the nominal point (w0

1,..., w
0
N−1

) contained in the stability
domain.

In this approach, the uncertain parameters’ nominal values
are placed in the center of each interval. Because of this
symmetry property on the uncertainties, it is not possible
to cover all possible weights combinations with only one
evaluation. To address this problem, µ-analysis is evaluated
on a finite set of weight parametrizations P .

For a given system G(θ), thus a fixed θ ∈ Θ and a
parametrization ρ ∈ P respecting (11), a upper bound µ̄ρ =
maxω(Mθ(jω, ρ)) is computed and the µ-guaranteed stability
domain Dρθ , is obtained by |δwi | < 1

µ̄ρ , i ∈ {1,..., N} which
is equivalent to:

Dρθ :=

{
wi ∈

]
w0
i −

w1
i

µ̄ρ
;w0

i +
w1
i

µ̄ρ

[
, i ∈ {1,..., N}

}
(17)

For a given system G(θ), θ ∈ Θ and a parametrization set
P , the total guaranteed stability domain is obtained as the
union of all guaranteed stability domains evaluated for all
parametrizations:

Dθ =
⋃
ρ∈P
Dρθ (18)

Evaluation nodes where stability is analyzed have to be
selected in order to cover the entire weight set. These values
can be a grid of the weights convex space with an appropriate
pattern. The method provides hypercubes where stability is



ensured; however, it does not offer any conclusions about the
space outside these domains. To maximize the area where
stability is guaranteed, a smaller grid pattern can be chosen
but requires more computing resources. Indeed, the denser the
parameterization, the closer the guaranteed stability domain
will be to the real stability domain in which it is included.

The proposed approach provides a weight validity set for the
plant G(θ), θ ∈ Θ where stability is ensured if W ∈ Dθ. The
study conducted by µ-analysis allowed us to intuit stability, but
this is not a guarantee for weights that will vary over time.
The approach could be extended with the help of neglected
dynamics judiciously introduced as previously mentioned.

IV. OBSERVERS DESIGN BASED ON STABILITY DOMAIN

This section assumes that a bank of controllers with a
suitable design is already available and that it is unnecessary
to modify them to obtain a correct setting of the MMAC.
This section focuses thus on observers. The estimators design
has an essential impact on the convergence of the PPE, firstly
through the observation error use, and secondly because the
observer matrix gain is used as the convergence matrix in the
Bayesian validity recursive update (10). To provide a design
procedure, a methodology based on the stability domains
previously determined is proposed.

A. Characteristic time of MMAC design

For any LTI plant G(θ), θ ∈ Θ, the closed-loop stability is
ensured with the corresponding stability domain for all W ∈
Dθ. According to assumption 1, uncertainty trajectories are
piecewise varying. A trajectory from θi ∈ Ω to θj ∈ Ω will
be referred as system switching and defined by:

G(θj → θi) :=

{
G(θ) | ∃ts,

θ(t = ts) = θj
and θ(t > ts) = θi

}
(19)

Furthermore, a set of scenarios S corresponding to the
typical mode of operation for the system is also considered.
This series of temporal scenarios contains profiles of pa-
rameter variations according to the operating conditions. It
can also include characteristic situations of external signals
such as significant reference or disturbances variations. So
as to limit scenario dependence during observer training,
stochastic signals representing realistic measurement noises
can be considered.

Although limited conclusions from the stability analysis
can be given for time-varying weights, it is reasonable that
after a system switching, the validities should belong to the
corresponding stability domain. The time spend outside this
domain is an indicator of the closed-loop system’s unstability
and it has to be minimized. For a given scenario and switching
G(θj → θi), it is possible to compute the required time τθj→θi
for the validities calculated by the PPE to reach the stability
domain and remain inside:

τθj→θi := inf
τ
{∀t > τ, W (t) ∈ Dθi} (20)

Under the exact matching hypothesis (assumption 2) a finite
number of possible switches from θj ∈ Θ to θi ∈ Θ can be

considered: G(θj → θi), (i, j) ∈ {1,..., N}2and i 6= j. Then
for each possible switching scenario, a time spent outside of
the stability domain τθi→θj can be computed, and a global
time is achieved by summation as follow:

τ :=
∑
σ∈S

N∑
i=1

N∑
j=1
j 6=i

τθj→θi (21)

The obtained time is proposed to be a characterization of the
observers tuning and more generally, of the MMAC design (in
fact, it is reminded that PPE dynamics also mainly depended
on the observer gains (10)). This time occurs as a metric that
needs to be minimized with respect to observer dynamics.

B. Optimization formulation

Through the method presented in lemma 1, the design of an
observer Ei consists of a single parameter αi that is the decay
rate imposed by the desired dynamic of the exponential ob-
server error. Those parameters characterize observers’ design.
For a given bank of controllers, the optimal MMAC tuning
depending on the bank of observers according to the method
(9) is formulated by the following optimization problem:

minimize
αi,i∈{1,...,N}

τ(αi, i ∈ {1,..., N}) (22)

This optimization problem being highly nonlinear, genetic
algorithms can be used or other derivative-free optimization
algorithms such as the Nelder-Mead algorithm [21].

The fitness function is given by the evaluation of the
following flowchart:
• Build each gain observer Li according to (9) for i =
{1,..., N},

• Compute each τθj→θi according to (20),
• Evaluate τ(αi, i ∈ {1,..., N}) following (21).

Alternatively, it is possible to reduce the size of the op-
timization problem by assuming identical dynamics for all
observers. The convergence of observation errors will then
satisfy lyapunov equations with the same imposed decay rate
α. The optimization problem (22) which is then limited to a
single parameter α, is more conservative but easier to solve.

V. ILLUSTRATIVE APPLICATION

A. Case study : Inverted pendulum on a cart

In this section, the pendulum on a cart presented in Fig. 3
is chosen to illustrate the proposed approach.

Fig. 3. Pendulum on the cart



The system, denoted G, can be modeled by the following
simplified equations:

Ldi(t)dt +Ri(t) + φω(t) = u(t)

J dω(t)
dt + fω(t) + γ(t) = φi(t)

dxc(t)
dt = r

nω(t)

cos(ϕ(t))d
2xc(t)
dt2 + l d

2ϕ(t)
dt2 + fα

dϕ(t)
dt + g sin(ϕ(t)) = 0

(23)
where i(t), u(t) are current and voltage in the motor, ω(t) is
the rotation speed of the motor, xc(t) is the position of the
cart, ϕ(t) is the angle of pendulum and γ(t) is a disturbance
torque. Table I gives all nominal parameter values for this
example.

TABLE I
NOMINAL PARAMETERS VALUES

Symbol Signification Value Unit
R resistance of the motor 2.3 Ω
L inductor of the motor 2 ∗ 10−4 H
φ electromagnetic constant 0.0162 Nm/A
J inertia of the motor 5 ∗ 10−6 kg.m2

f friction coefficient 6 ∗ 10−5 N·m/rad.s
r radius of the pulley 0.022 m
n gear reduction 17 -
l length of the pendulum 0.275 m
fα friction coefficient on the pendulum 0.3 m/s
g weight acceleration 9.81 m/s2

Neglecting the electric time constant R/L ≈ 10−4s, the
state space representation of the linearized plant on the in-
verted position ϕ ≈ π is:

d
dt


xc(t)
ω(t)
ϕ(t)
ϕ̇(t)

 =


0 r/n 0 0
0 −a 0 0
0 0 0 1
0 −ad g/l −fα/l



xc(t)
ω(t)
ϕ(t)
ϕ̇(t)


+


0
b
0
bd

u(t) +


0
−c
0
−cd

 γ(t)

(24)

a =
φ2

RJ
+
f

J
; b =

φ

RJ
; c =

1

J
; d =

r

ln

B. MMAC stability domain analysis

For the sake of clarity of this example, only 3 cases corre-
sponding to motor inertia variations are considered. Parameters
of the fixed models Mi, i ∈ {1, 2, 3} obtained for the set of
parameter uncertainty Θ = {θ1, θ2, θ3} are as follows :

Model 1 : θ1 = {J = 5.10−6}
Model 2 : θ2 = {J = 50.10−6}
Model 3 : θ3 = {J = 125.10−6}

The first case corresponds to a nominal operation of the
system. The other two cases represent a degraded operation
with a modification of the motor inertia standing for a variation
of the point mass at the end of the pendulum.

For each of the three systems Mi, an appropriate controller
Ki is designed. A three degrees of freedom controller Ki(s)
corresponding to the Fig. 4 is computed using a H∞ method.
Such design of multivariable H∞ optimal control is carried out
using MATLAB hinfsyn function [22]. For the demonstration
needs, each controller stabilizes its associated model respect-
ing a suitable stability margin, but controllers meet strong
specifications on their performances.
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Fig. 4. Three degree of freedom control loop

For each known system, it is possible to establish the
LFT form and study the stability robustness by µ-analysis.
Fig. 5 shows the results of the µ-analysis obtained for the

Fig. 5. Stability analysis for 3 plant configurations

system in the nominal case Fig. 5(a) and the degraded cases
Fig. 5(b),Fig. 5(c). Results are plotted in two dimensions
because the third weight can be deduced from the others (4).
On Fig. 5, the domain of admissible weights obtained by the
µ-analysis are drawn in filled rectangle and the red crosses
represent the nominal values for which the closed-loop system



does not have all its eigenvalues in the left half plane and
therefore for which the robust stability analysis cannot and
does not need to be performed. The domain where stability is
guaranteed Dθi for the given system with fixed combinations
of controllers is obtained by the union of the given hyper-cubes
from the µ-analysis. In this study, a grid of nominal weights
parametrization with a grid step of 0.02 is used to cover all
the weights while respecting their convexity (4)

According to the required specifications considered in the
controller design, the possible systems are too different, and a
given controller does not allow to stabilize all possible config-
urations. In the configurations θ1 and θ3, a high contribution
from the non-nominal controllers does not allow conclusions
on stability. It is interesting to note in case of θ2, which is
a central case, these controllers have sufficient margins for a
large combination of controllers to stabilize the system. It can
be interesting to use this analysis a posteriori for controller
design to relax some performance specifications to broaden
the domain where stability robustness is ensured.

This stability analysis allows us to evaluate the robustness
of our multi-model approach. Indeed, a large stability domain
shows that the PPE can achieve a more approximative or less
rapid estimate. In contrast, a very narrow domain concentrated
on a vertex indicates that the model differs sharply from the
other ones, so its associated controller is specific. In this case,
its validity estimated by the PPE will have to be very accurate.

C. Estimator-based MMAC design

Attention now needs to be paid to the observers tuning and
indirectly to the convergence of the calculation of validities
by the PPE (10). The observers Ei are set by the method
presented in lemma 1. A minimum decay rate αi is imposed
on the exponential decay of the quadratic Lyapunov function
according to the estimation error. For purposes of robustness,
observers are based on an augmented model with an assumed
constant additive disturbance on the outputs. The design of
estimators is then carried out with the help of guaranteed
stability regions previously determined.

To do so, a typical scenario for the use of the system is
considered. This scenario includes piecewise reference varia-
tions between [−1; 1], an additive white gaussian noise on the
outputs with a three-fold standard deviation equal to 0.02 and
a sample time of 0.01s. The PPE is running with a sample
time of 10−3s and a threshold δ = 10−3.

Are also considered all the possible switchings
G(θj → θi), (i, j) ∈ {1, 2, 3}2and i 6= j. By the simulation
of the chosen scenario and each switching situation, a
characteristic metric τθi→θj (20) corresponding to the time
required to reach the stability domain Dθi and remain inside
it can be associated. A global feature τ is then obtained by
summing the different generated times (21).

Fig. 6 illustrates the results obtained for a given setting.
Fig. 6(a)−(f) shows the temporal evolution of the weights for
each studied scenario, while Fig. 6(g)−(i) gives the weights
trajectories in the plane phase. For this setting example,
characteristic time computed are τθ2→θ1 = 0.345s, τθ3→θ1 =

Fig. 6. Validities temporal evolutions and trajectories in phase plan

0.358s, τθ1→θ2 = 0.121s, τθ3→θ2 = 0.773s, τθ1→θ3 = 0.259s,
τθ2→θ1 = 0.179s and the sum τ = 2.04s.

The next step consists in minimizing this criterion according
to the optimization problem (22). To provide the clearest illus-
tration of the method presented, a similar dynamic is imposed
to all observers through ∀i ∈ {1, 2, 3}, αi = α. The observer
tuning problem thus becomes a single parameter optimization
problem α. It is proposed to evaluate the fitness function for a
suitable grid of possible tuning values according to the intro-
duced flowchart in IV-B. Fig. 7 shows with a logarithmic scale,
fitness function for α in the range [10−2; 103]. The optimal
proposed tuning of MMAC is obtained for α = 100.479.

Fig. 7. Fitness function evaluation



D. Simulation results

The simulations are performed using a real system described
by the non-linear equations (23). The plant is subject to
parametric variations θ ∈ Θ and measurement noise included
95% of the time in [−0.02; 0.02]. In Fig. 8, an example of
cart responses with the proposed MMAC design is given and
exhibiting satisfactory behaviour. An important point to notice
is that the majority of the possible settings of the MMAC do
not guarantee the stability of the system and that it seems
very difficult and tedious to find a sufficiently robust tuning
manually.

Fig. 8. Proposed Estimator-based MMAC responses for a parametric varia-
tions

VI. CONCLUSIONS AND FUTURE WORKS

This work provides a method for the stability analysis
of MMAC as part of the robust control framework. This
approach, based on LFT and µ-analysis is well suited for
a finite set of nominal model-controller pairs, and provided
a stability domain of the controller combinations. Although
the study suffers from some limitations, it lays the basis for
stability analysis and offers many new perspectives.

Another key proposal is a method using observer design to
drive the validities evaluator. The stability robustness analysis
leads to the use of these results a priori to set up the estimators.
A definite advantage of the method is to provide a solution
for designing the switching logic simultaneously. This tuning
is optimized according to a relevant criterion.

In future works, the weight calculation method analysis can
be integrated into the stability analysis by introducing their
dynamics into the uncertainties. These considerations could
be done by introducing uncertainties for neglected dynamics
or by using Integral Quadratic Constraints (IQC). The account
of parametric variations in the system can also be studied by
adding new uncertainties for instance.
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