Skip to Main content Skip to Navigation
Journal articles

Shrinking the eigenvalues of M-estimators of covariance matrix

Abstract : A highly popular regularized (shrinkage) covariance matrix estimator is the shrinkage sample covariance matrix (SCM) which shares the same set of eigenvectors as the SCM but shrinks its eigenvalues toward the grand mean of the eigenvalues of the SCM. In this paper, a more general approach is considered in which the SCM is replaced by an M-estimator of scatter matrix and a fully automatic data adaptive method to compute the optimal shrinkage parameter with minimum mean squared error is proposed. Our approach permits the use of any weight function such as Gaussian, Huber's, Tyler's, or t weight functions, all of which are commonly used in M-estimation framework. Our simulation examples illustrate that shrinkage M-estimators based on the proposed optimal tuning combined with robust weight function do not loose in performance to shrinkage SCM estimator when the data is Gaussian, but provide significantly improved performance when the data is sampled from an unspecified heavy-tailed elliptically symmetric distribution. Also, real-world and synthetic stock market data validate the performance of the proposed method in practical applications.
Complete list of metadatas

https://hal-centralesupelec.archives-ouvertes.fr/hal-03105531
Contributor : Frédéric Pascal <>
Submitted on : Monday, January 11, 2021 - 10:41:09 AM
Last modification on : Tuesday, January 19, 2021 - 2:09:04 PM

File

2006.10005.pdf
Files produced by the author(s)

Identifiers

Citation

Esa Ollila, Daniel Palomar, Frédéric Pascal. Shrinking the eigenvalues of M-estimators of covariance matrix. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2020, pp.256 - 269. ⟨10.1109/TSP.2020.3043952⟩. ⟨hal-03105531⟩

Share

Metrics

Record views

18

Files downloads

9