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Abstract

We consider an n-player chance-constrained game under elliptically symmetric

distributions. For a confidence level greater than 0.5 and certain class of payoff

functions and strategy sets, we suitably construct an equivalent mathematical

program whose global maximizer is a Nash equilibrium.
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1. Introduction

The Nash equilibrium is one of the most desired solution concept which is

used to study the competition among several selfish and rational players. It is

a strategy profile of the players where there is no incentive for unilateral devi-

ation by any player. The theory of games involving Nash equilibrium started

with the paper by John Nash [18] where he showed that there exists a mixed

strategy Nash equilibrium for finite strategic games. Later it has been shown

that a Nash equilibrium of a general non-cooperative game exists under certain

conditions on payoff functions and strategy sets of the players [8, 9]. The games

considered in these papers are deterministic in nature, i.e., the players’ strategy
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sets and payoff functions are defined using real valued functions. However, in

practical situations the decision making process usually faces various types of

uncertainties due to which payoff functions or strategy sets are modeled using

random variables [7, 17, 19]. The expected value approach is used to model

the uncertainties when the decision makers are risk neutral [20]. For risk averse

players, the payoff criterion with the risk measure CVaR [14, 20] and the vari-

ance was considered in the literature [6]. Singh et al. [22, 24] considered a

finite strategic game where the payoff vector of each player is a random vector.

They considered the case where each player is interested in the payoffs that can

be obtained with certain confidence. To model this situation, they defined the

payoff function of each player using a chance constraint and called such game a

chance-constrained game. In [22], the authors showed the existence of a mixed

strategy Nash equilibrium for an n-player chance-constrained game, when the

payoff vector of each player follows a multivariate elliptically symmetric distri-

bution. In [24], the authors proposed an equivalent mathematical program to

compute the mixed strategy Nash equilibria of the two player chance-constrained

game for elliptically symmetric distributed payoffs. There are some zero-sum

chance-constrained games studied in past literature [1, 2, 3, 4].

The chance-constrained games in the above-mentioned papers model the

payoffs’ uncertainties using chance constraints. However, the uncertainties can

be present in the strategy sets due to various external factors. The chance-

constrained based strategy sets are often considered in various applications, e.g.,

resource constraints in stochastic shortest path problem [5] and risk constraints

in portfolio optimization [13] can be modelled using chance constraints. The

literature on games with chance-constrained based strategy sets have covered

only a small portion of open questions [21, 25]. Singh and Lisser [25] considered

a two player zero-sum matrix game where strategy set of each player is defined

using individual chance constraints. They showed that the saddle point equilib-

ria of the game can be computed by solving a primal-dual pair of second order

cone programs when the random constraint vectors follow multivariate ellipti-

cally symmetric distributions. Peng et al. [21] considered an n-player game with
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joint chance constraints and showed that there exists a Nash equilibrium of the

game if the row vectors are independent and follow multivariate normal distri-

butions. In this paper, we consider an n-player game where the strategy sets are

defined by individual chance constraints. The random constraint vectors follow

multivariate elliptically symmetric distributions. It follows from [12] that an

individual chance constraint is equivalent to a second order cone constraint and

it makes the feasible strategy set of each player a convex set. Then, under stan-

dard quasi-concavity and continuity conditions on the payoff functions, there

exists a Nash equilibrium of the game [8, 9]. In order to compute explicitly a

Nash equilibrium, we consider a specific payoff function for each player which

satisfy the standard conditions. The first term of a player’s payoff function is

multi-linear in all the players strategies and second term is a quadratic con-

cave function of the player’s strategies. Such types of payoff functions are often

encountered in practical situations [11, 19, 26, 27]. We propose an equivalent

mathematical program for this class of games and show the one-to-one corre-

spondence between a Nash equilibrium of the game and a global maximizer of

the mathematical program.

The structure of rest of the paper is as follows. Section 2 contains the

definition of a chance-constrained game. Section 3 presents the existence of a

Nash equilibrium. The equivalent mathematical program is given in Section 4.

2. The model

We consider an n-player non-cooperative game defined by tuple(
I, (Xi)i∈I , (ui)i∈I

)
, where I = {1, 2, . . . , n} is the set of players, Xi ⊂ Rmi

is a strategy set of player i and ui :
∏
i∈I X

i → R is a payoff function of

player i. The strategy set Xi, i ∈ I, is a non-empty, convex and compact set.

The product set X =
∏
i∈I X

i is a set of all strategy profiles of the game. Let

X−i =
∏n
j=1;j 6=iX

j be the set of vectors of strategies of all the players but

player i. The generic elements of Xi, X−i, and X are denoted by xi, x−i, and

x respectively. For yi ∈ Xi, we define (yi, x−i) to be a strategy profile where

player i chooses a strategy yi and each player j ∈ I, j 6= i, chooses a strategy
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xj . We consider the case where the strategies of player i are further restricted

by the following random linear constraints

(
aik
)T
xi ≤ bik, k = 1, 2, . . . ,Ki, (2.1)

where aik is an mi × 1 random vector defined on the probability space (Ω,F,P)

and bik ∈ R; T denotes the transposition. We consider the case where kth

constraint of player i given by (2.1) is satisfied with at least a given probability

level αik. Let αi = (αik)Kik=1 denotes the probability level vector. The chance

constraints corresponding to random constraints (2.1) are given by

P
{(
aik
)T
xi ≤ bik

}
≥ αik, k = 1, 2, . . . ,Ki. (2.2)

Therefore, for a given probability level vector αi, the feasible strategy set of

player i, i ∈ I, is defined by

Siαi =
{
xi ∈ Xi | P

{ (
aik
)T
xi ≤ bik

}
≥ αik, k = 1, 2, . . . ,Ki

}
. (2.3)

We call the game with payoff functions (ui(·))i∈I and strategy sets (Siαi)i∈I a

chance-constrained game. We assume that the set Siαi , i ∈ I, is non-empty,

and the probability distribution of the random vector (aik)Kik=1, i ∈ I, and the

probability level vector (αi)i∈I are known to all the players. Then, the above

chance-constrained game is a non-cooperative game with complete information.

For a given strategy profile x−i of other players, a set of best response strategies

of player i at probability level vector αi is defined as

BRiαi(x
−i) =

{
x̄i ∈ Siαi | ui(x̄

i, x−i) ≥ ui(xi, x−i), ∀ xi ∈ Siαi
}
.

A strategy profile x∗ is said to be a Nash equilibrium of a chance-constrained

game at probability level vector (αi)i∈I if and only if for each i ∈ I

ui(x
i∗, x−i∗) ≥ ui(xi, x−i∗), ∀ xi ∈ Siαi .

It is clear that x∗ is a Nash equilibrium if and only if xi∗ ∈ BRiαi(x
−i∗) for all i ∈

I. The case of two players with zero-sum payoff structure is considered in [25].

The saddle point equilibria of zero-sum chance-constrained games considered
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in [25] can be computed by solving a primal-dual pair of second order cone

programs. The n-players games where the random constraints (2.1) are jointly

satisfied with a given probability are considered in [21]. The authors showed the

existence of a Nash equilibrium when the random vectors aik, k = 1, 2, . . . ,Ki

are independent and follow a multivariate normal distribution.

3. Existence of Nash equilibrium

We consider the case where for each i ∈ I, the vectors aik, k = 1, 2, . . . ,Ki,

follow multivariate elliptically symmetric distributions.

Definition 3.1. A d-dimensional random vector ξ follows an elliptically sym-

metric distribution Ellipd(µ,Γ, ϕ) if its characteristic function is given by

EeizT ξ = eiz
Tµϕ(zTΓz) where ϕ is the characteristic generator function, µ is

the location parameter, and Γ is the positive semidefinite scale matrix.

The class of multivariate elliptically symmetric distributions generalizes the

multivariate normal distribution. Some famous distributions belonging to the

family of elliptically symmetric distributions include normal distribution with

ϕ(t) = exp{− 1
2 t}, Student’s t distribution with ϕ(t) varying with its degree of

freedom [15], Cauchy distribution with ϕ(t) = exp{−
√
t}, Laplace distribution

with ϕ(t) = (1 + 1
2 t)
−1, and logistic distribution with ϕ(t) = 2π

√
t

eπ
√
t−e−π

√
t

(for

details see [10]). It is well known that the family of elliptically symmetric

distributions are closed under affine transformations. We summarize this result

in Proposition 3.2.

Proposition 3.2 (Fang et al. [10]). If a d-dimensional random vector ξ fol-

lows an elliptically symmetric distribution Ellipd(µ,Γ, ϕ), then for any (N×d)-

matrix C and any N × 1-vector c, Cξ + c follows an N -dimensional elliptically

symmetric distribution EllipN (Cµ+ c, CΓCT , ϕ).

We assume that the random vector aik follows an elliptically symmetric

distribution Ellipmi(µ
i
k,Σ

i
k, ϕ

i
k), where Σik is a positive definite scale matrix;

5



we denote it by Σik � 0. From Proposition 3.2, for a given xi,
(
aik
)T
xi fol-

lows Ellip
(
(µik)Txi, (xi)TΣikx

i, ϕik
)
. We can write

∥∥(Σik)1/2xi
∥∥ =

√
(xi)TΣikx

i,

where (Σik)1/2 is the unique positive definite square root of matrix Σik and ‖·‖

is the Euclidean norm. Then, ξik =
(aik)

T
xi−(µik)T xi

‖(Σik)1/2xi‖ follows a univariate stan-

dard elliptically symmetric distributions Ellip(0, 1, ϕik). The positive definite

condition on scale matrix is required to get the equivalent second-order cone

constraint for individual chance constraint. Therefore, from Lemma 2.2 of [12],

the feasible strategy set Siαi can be written as

Siαi =
{
xi ∈ Xi | (xi)Tµik+Ψ−1

ξik
(αik)||(Σik)

1
2xi|| ≤ bik, ∀ k = 1, 2, . . . ,Ki

}
, i ∈ I,

(3.1)

where Ψ−1
ξik

(·) is a quantile function of 1-dimensional distribution function in-

duced by the characteristic function ϕik(t2). It is evident that the feasible strat-

egy set Siαi is a compact set. It follows from Proposition 2.1 of [12] that Siαi is a

convex set for all αi ∈ (0.5, 1]Ki and if each random vector aik, k = 1, 2, . . . ,Ki,

has strictly positive density function, Siαi is a convex set for all αi ∈ [0.5, 1]Ki .

Theorem 3.3. Consider an n-player chance-constrained game defined in Sec-

tion 2, where the payoff function of player i, i ∈ I, satisfies the following con-

ditions

(i) ui(x
i, x−i) is a quasi-concave function of xi for all x−i ∈ X−i.

(ii) ui(x) is a continuous function of x.

Suppose the random vector aik ∼ Ellipmi(µ
i
k,Σ

i
k, ϕ

i
k), where Σik � 0 , for all

k = 1, 2, . . . ,Ki and i ∈ I. Then, there exists a Nash equilibrium for all α ∈

(0.5, 1]K1 × (0.5, 1]K2 × · · · × (0.5, 1]Kn .

Proof. For elliptically symmetric distribution, the feasible strategy sets Siαi ,

i ∈ I, is a non-empty, convex and compact sets for all αi ∈ (0.5, 1]Ki . Then,

under the conditions given in Theorem 3.3, the existence of Nash equilibrium

directly follows from [8, 9]. �
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The proof of Theorem 3.3 depends on the convexity of feasible strategy sets

Siαi , i ∈ I. If αik < 0.5, k = 1, 2, . . . ,Ki, under conditions given in Proposition

2.2, Siαi is not a convex set. Note that, in chance constraint programming the

confidence levels are typically high, therefore, αik > 0.5 is not a very strong

requirement in Theorem 3.3.

4. Mathematical programming formulation

We consider a class of n-player chance-constrained games which satisfy the

conditions (i) and (ii) of Theorem 3.3. For each i ∈ I, let J i = {1, 2, · · · ,mi}.

Define the product sets J =
∏
i∈I J

i and J−i =
∏
k∈I;k 6=i J

k. Consider a vector

(ri(s))s∈J , where s = (s1, s2, · · · , sn) with si ∈ J i. The payoff function of player

i is given by

ui(x) =
∑
s∈J

n∏
j=1

ri(s)xjsj −
1

2
(xi)TQix

i, (4.1)

where Qi is a positive definite matrix. The first term of the payoff function of

player i is linear in ith player’s strategies for a fixed strategy profile of rest of

the players and the second term only depends on the strategies of player i and

is quadratic in nature. Such a payoff function appears in various applications,

e.g., it represents the mean-variance model in portfolio optimization [11, 26, 27]

and in electricity market the second term can be the production cost [19] and

the first term represents the payoff received due to the interaction among all

the players.

For every si ∈ J i, define ri(si, x
−i) =

∑
s−i∈J−i

∏
j∈I;j 6=i r

i(si, s−i)x
j
sj .

Then, ui(x
i, x−i) =

∑
si∈Ji r

i(si, x
−i)xisi −

1
2 (xi)TQix

i. The strategy set Xi,

i ∈ I, is a bounded polyhedron and it is defined as

Xi = {xi ∈ Rmi | Cixi = di, xi ≥ 0}, (4.2)

where Ci ∈ RLi×mi , di ∈ RLi and 0 is an mi × 1 zero vector. In this paper, we

identify 0 as a zero vector of appropriate dimension.
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Assumption 4.1. For each i ∈ I, the set Siαi is strictly feasible, i.e., there

exists an xi ∈ Rmi such that xi is a feasible point of Siαi and all its inequality

constraints are strictly feasible.

The condition given in Assumption 4.1 is a Slater condition which is sufficient

for strong duality in convex optimization problem. We use these conditions

in order to derive equivalent mathematical program for the chance-constrained

game.

4.1. Best response convex programs

For a given x−i ∈ S−iα−i , a best response strategy of player i is obtained by

solving the following convex optimization problem

[Pi] max
xi,(tik)

Ki
k=1

∑
si∈Ji

ri(si, x
−i)xisi −

1

2
(xi)TQix

i

s.t (i) Cixi = di

(ii) (xi)Tµik + Ψ−1
ξik

(αik)||tik|| ≤ bik, ∀ k = 1, 2, . . . ,Ki

(iii) tik = (Σik)
1
2xi, ∀ k = 1, 2, . . . ,Ki

(iv) xi ≥ 0.

The Lagrangian dual of best response convex optimization problem [Pi] is

given by

min
(γik)

Ki

k=1
,δi,λi≥0,βi≥0

max
(tik)

Ki
k=1,x

i∈Rmi

[ ∑
si∈Ji

ri(si, x
−i)xisi −

1

2
(xi)TQix

i

+(δi)T
(
di − Cixi

)
+

Ki∑
k=1

(γik)T
(
tik − (Σik)

1
2xi
)

+

Ki∑
k=1

λik

(
bik − (xi)Tµik −Ψ−1

ξik
(αik)||tik||

)
+ (βi)Txi

]
,

where δi ∈ RLi and λi ∈ RKi+ , γik ∈ Rmi , k = 1, 2, . . . ,Ki, β
i ∈ Rmi+ are the

vectors of Lagrange multipliers corresponding to constraints (i), (ii), (iii) and

(iv), respectively. For a given x−i, define a vector Ri(x−i) = (ri(si, x
−i))si∈Ji .

Then, for a fixed (γik)Kik=1, δi and λi ≥ 0, βi ≥ 0, we have

8



max
(tik)

Ki
k=1,x

i∈Rmi

[ ∑
si∈Ji

ri(si, x
−i)xisi)−

1

2
(xi)TQix

i + (δi)T
(
di − Cixi

)
+

Ki∑
k=1

(γik)T
(
tik − (Σik)

1
2xi
)

+

Ki∑
k=1

λik

(
bik − (xi)Tµik −Ψ−1

ξik
(αik)||tik||

)
+ (βi)Txi

]

= max
xi∈Rmi

[
− 1

2
(xi)TQix

i + (xi)T

(
Ri(x−i)− (Ci)T δi −

Ki∑
k=1

(Σik)
1
2 γik

−
Ki∑
k=1

λikµ
i
k + βi

)]
+ max

(tik)
Ki
k=1

[
Ki∑
k=1

(
(γik)T tik −Ψ−1

ξik
(αik)λik||tik||

)]
+ (δi)T di +

Ki∑
k=1

λikb
i
k

The first max is given by
1

2
(Pi)

TQ−1
i Pi,

where Pi = Ri(x−i)−(Ci)T δi−
∑Ki
k=1(Σik)

1
2 γik−

∑Ki
k=1 λ

i
kµ

i
k+βi, and the second

max problem is unbounded unless

||γik|| ≤ Ψ−1
ξik

(αik)λik, ∀ k = 1, 2, · · · ,Ki.

Therefore, the dual of [Pi] is given by

[Di] min
(γik)

Ki

k=1
,δi,λi,βi

1

2
(Pi)

TQ−1
i Pi + (δi)T di +

Ki∑
k=1

λikb
i
k

s.t.

(i) ||γik|| ≤ Ψ−1
ξik

(αik)λik, ∀ k = 1, 2, · · · ,Ki

(ii) λi ≥ 0, βi ≥ 0.

4.2. Mathematical Program

To the best of our knowledge, the characterization of Nash equilibrium us-

ing the global optimal points of a suitably constructed mathematical program

was first proposed by Mangasarian and Stone [16]. They showed that a Nash

equilibrium of a bimatrix game can be obtained from a global maximizer of

a quadratic program. Singh et al. [23, 24] characterized the Nash equilib-

ria of the games with random payoffs using the global maximizer of a certain

mathematical program. They used the fact that the best response problem of
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each player is equivalent to a primal-dual pair of convex programs for which

strong duality holds under Slater conditions. Along the same line, we con-

struct a mathematical program by combining n primal-dual pair [Pi]-[Di] of

best response convex programs. Then, we characterize the Nash equilibria of

the chance-constrained game using the global optimal points of the mathemat-

ical program. Let ζ =
(
xi, (tik)Kik=1,

(
γik
)Ki
k=1

, δi, λi, βi
)
i∈I

, and φ(ζ) denote the

decision variables and objective function of the mathematical program. We have

the following characterization.

Theorem 4.2. Consider an n-player chance-constrained game defined in Sec-

tion 2, where the payoff function ui(x) and the strategy set Xi of player i,

i ∈ I, is given by (4.1) and (4.2), respectively. Suppose the random vectors

aik ∼ Ellipmi(µik,Σik, ϕik), where Σik � 0 , for all k = 1, 2, . . . ,Ki and i ∈ I. Let

Assumption 4.1 holds. Then, for an α ∈ (0.5, 1]K1 × (0.5, 1]K2 × · · · × (0.5, 1]Kn

1. If (xi∗)i∈I is a Nash equilibrium of the chance-constrained game, there

exists a vector ζ∗ =
(
xi∗, (ti∗k )Kik=1,

(
γi∗k
)Ki
k=1

, δi∗, λi∗, βi∗
)
i∈I

such that it

is a global maximizer of the following mathematical program [MP]

[MP] max
ζ

φ(ζ) =
∑
i∈I

[ ∑
si∈Ji

ri(si, x
−i)xisi −

1

2
(xi)TQix

i

− 1

2
(Pi)

TQ−1
i Pi − (δi)T di −

Ki∑
k=1

λikb
i
k

]

s.t.

(i) ||γik|| ≤ Ψ−1
ξik

(αik)λik, ∀ k = 1, 2, · · · ,Ki, i ∈ I

(ii) (xi)Tµik + Ψ−1
ξik

(αik)||(Σik)
1
2xi|| ≤ bik, ∀ k = 1, 2, . . . ,Ki, i ∈ I

(iii) Cixi = di, i ∈ I

(iv) xi ≥ 0, λi ≥ 0, βi ≥ 0, i ∈ I.

with objective function value φ(ζ∗) = 0.

2. If ζ∗ =
(
xi∗, (ti∗k )Kik=1,

(
γi∗k
)Ki
k=1

, δi∗, λi∗, βi∗
)
i∈I

is a global maximizer of
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the mathematical program [MP], (xi∗)i∈I is a Nash equilibrium of the

chance-constrained game.

Proof. 1. Let (xi∗)i∈I be a Nash equilibrium. Then, for each i ∈ I,(
xi∗, (ti∗k )Kik=1

)
is an optimal solution of [Pi] for the fixed x−i∗. The

strong duality holds under Assumption 4.1. Therefore, there exists((
γi∗k
)Ki
k=1

, δi∗, λi∗, βi∗
)

which is an optimal solution of [Di] such that

for each i ∈ I∑
si∈Ji

ri(si, x
−i∗)xi∗si −

1

2
(xi∗)TQix

i∗ =
1

2
P ∗i Q

−1
i P ∗i + (δi∗)T di +

Ki∑
k=1

λi∗k b
i
k,

(4.3)

where P ∗i = Ri(x−i∗) − (Ci)T δi∗ −
∑Ki
k=1(Σik)

1
2 γi∗k −

∑Ki
k=1 λ

i∗
k µ

i
k + βi∗.

Therefore, ζ∗ =
(
xi∗, (ti∗k )Kik=1,

(
γi∗k
)Ki
k=1

, δi∗, λi∗
)
i∈I

is a feasible point of

[MP] and φ(ζ∗) = 0. Let ζ be an arbitrary feasible point of [MP]. Then,

for each i ∈ I, (xi, (tik)Kik=1) and ((γik)Kik=1, δ
i, λi, βi) will be feasible points

of [Pi] and [Di], respectively. Then, from weak duality theorem φ(ζ) ≤ 0

for all feasible point ζ. Therefore, ζ∗ is a global maximizer of [MP].

2. Let ζ∗ be a global maximizer of [MP]. From the proof of first part it follows

that φ(ζ∗) = 0. The primal-dual pair [Pi]-[Di], i ∈ I, of convex programs

are feasible at ζ∗. Therefore, it follows from weak-duality that each part of

the objective function is non-negative at ζ∗. Hence, (4.3) holds at ζ∗. For

every xi ∈ Siαi , take tik = (Σik)
1
2xi, k = 1, 2, . . . ,Ki. Then, (xi, (tik)Kik=1) is

a feasible solution of [Pi]. Again, from weak duality we have

∑
si∈Ji

ri(si, x
−i∗)xisi −

1

2
(xi)TQix

i ≤ 1

2
(P ∗i )TQ−1

i P ∗i +(δi∗)T di+

Ki∑
k=1

λi∗k b
i
k,

for all xi ∈ Siαi . From (4.3), for each i ∈ I, we have

ui(x
i∗, x−i∗) ≥ ui(xi, x−i∗), ∀ xi ∈ Siαi .

Hence, (xi∗)i∈I is a Nash equilibrium of the chance-constrained game.

�

11



The mathematical program [MP] is a non-convex optimization problem. In gen-

eral, a non-convex optimization problem is hard to solve. However, the mathe-

matical program [MP] has a nice structure, e.g., the objective function value is

non-positive for all feasible points and a global maximum is attained when the

objective function value is zero. Due to these properties, mathematical program

[MP] is not very difficult to solve. The existing nonlinear optimization solvers

can be used to compute a global maximizer of [MP]. The similar optimization

problems were proposed in [23, 24] and Nash equilibria for randomly gener-

ated games of various sizes were computed using fmincon solver in MATLAB.

The details about the computation time are given in the numerical sections of

[23, 24].
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