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Integral input-to-state stability of delay systems based on
Lyapunov-Krasovskii functionals with point-wise dissipation rate

Antoine Chaillet and Pierdomenico Pepe

Abstract— We show that a Lyapunov-Krasovskii functional
whose dissipation rate involves solely the current instantaneous
value of the state norm is enough to guarantee integral input-
to-state stability (iISS). This result generalizes existing sufficient
conditions for iISS, where the dissipation rate involves the
whole Lyapunov-Krasovskii functional itself, and simplifies
their applicability. Moreover, it provides a more natural bridge
with the classical condition for global asymptotic stability of
input-free systems. The proof strategy we employ relies on a
novel characterization of global asymptotic stability, which may
be of interest on its own.

I. INTRODUCTION

The input-to-state stability (ISS) framework, standard tool
in the analysis and control of finite-dimensional systems
[12], [14], has more recently extended to infinite-dimensional
dynamics, including time-delay systems. A handy tool to
establish ISS of time-delay systems is to rely on Lyapunov-
Krasovskii functionals (LKF) [10]. More precisely, just like
in the finite-dimensional case, ISS is guaranteed provided
that the derivative of such functional V along the system’s
solutions satisfies

V̇ ≤ −α(V ) + γ(|u|), (1)

where α, γ are K∞ functions and u is the system’s input.
In this differential inequality, the dissipation rate α involves
the whole LKF V . In [2], we have recently conjectured that
ISS would hold also under the less stringent condition that

V̇ ≤ −α(|x(t)|) + γ(|u|), (2)

meaning with a dissipation rate that involves only the cur-
rent instantaneous value of the state norm (what we call
a point-wise dissipation rate). Such a formulation would
simplify the ISS analysis of time-delay systems. It would
also homogenize ISS theory with the Lyapunov-Krasovskii
theory of input-free systems, as global asymptotic stability
of such systems is guaranteed under a point-wise dissipation
rate, namely V̇ ≤ −α(|x(t)|) [4]. Although this simpler
characterization of ISS has been established for particular
classes of systems in [2], the conjecture has not yet been
proved or disproved.

In the present paper, we prove this conjecture for a weaker
robustness property, namely integral input-to-state stability
(iISS). This property was introduced in [13] for finite-
dimensional systems. It imposes that solutions are bounded
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by a decaying term of the initial state plus a term depending
on the energy brought by the input. iISS of time-delay
systems can be established in a similar way as ISS: it was
shown in [10] that if a dissipation inequality like (1) holds
with a positive definite α then iISS holds. A similar result
was proposed in [7] in a wider infinite-dimensional context.
Here, we show that a point-wise dissipation rate like in (2)
(with α merely positive definite) is enough to establish iISS.

The proof of this result requires generalizations, that may
be of interest on their own, of existing finite-dimensional
results to time-delay systems. More precisely, we show that
if a time-delay system is globally asymptotically stable in
the absence of inputs (0-GAS), then a dissipation inequality
like (1) holds (with α positive definite), but with a LKF V
that may not be radially unbounded. We also show that 0-
GAS implies iISS provided that the system is zero-output
dissipative. These two properties were originally established
in [1] for finite-dimensional systems. Finally, we show that
iISS holds under the even less conservative assumption that
V̇ ≤ −σ(|x(t)|, ‖xt‖)+γ(|u|), where σ ∈ KL and γ ∈ K∞.

The outline of the paper is as follows. We start by pre-
senting the class of systems considered here and by recalling
iISS for time-delay systems and the existing LKF sufficient
conditions to establish it. Then, in Section III, we state our
main results. An academic example is provided in Section
IV. All proofs are provided in Section V. We conclude with
some perspective for future work.

Notations. Given x ∈ Rn, |x| denotes its Euclidean norm.
Given a set I ⊂ R and a measurable signal u : I → Rm,
‖u‖ := ess supt∈I |u(t)|. U denotes the set of all signals
u : R≥0 → Rm that are measurable and locally essentially
bounded. Given θ > 0 and n ∈ N≥1, the set C([−θ; 0],Rn)
of all continuous functions φ : [−θ; 0] → Rn is denoted by
X . A function α : R≥0 → R≥0 is said to be of class PD if
is continuous and positive definite. α ∈ K if α ∈ PD and
it is increasing. α ∈ K∞ if α ∈ K and it is unbounded.
A function β : R≥0 × R≥0 → R≥0 is of class KL if
β(·, t) ∈ K for each t ∈ R≥0 and, for each s ∈ R≥0,
β(s, ·) is continuous, non-increasing and tends to zero as
its argument tends to infinity.

II. CONTEXT AND DEFINITIONS

A. Time-delay systems

The paper considers nonlinear delayed systems of the form

ẋ(t) = f(xt, u(t)), ∀t ≥ 0 a.e. (3)



x(t) ∈ Rn is the instantaneous value of the state at time
t ≥ 0. xt ∈ X denotes its history over the time interval
[t − θ; t], where θ is larger than, or equal to, the maximum
delay involved in the dynamics. On its domain of existence,
xt ∈ X is defined as

xt :

{
[−θ; 0] → Rn
s 7→ x(t+ s).

The input u is assumed to be in the set U . The function
f : X × Rm → Rn is assumed to be Lipschitz on any
bounded subset of X×Rm → Rn. These assumptions ensure
that, given any x0 ∈ X , system (3) admits a unique and
locally absolutely continuous solution on a maximal time
interval [0, b), b ∈ (0;+∞]. Moreover, if b < +∞, then the
solution is unbounded on [0, b). See [4]. We also assume that
f(0, 0) = 0.

B. iISS
iISS of such time-delay systems was introduced in [10].

It is a natural extension the iISS property that was originally
introduced in a finite-dimensional context [13].

Definition 1 (iISS, [10]) The delay system (3) is integral
input-to-state stable (iISS) if there exist β ∈ KL and δ1, δ2 ∈
K∞ such that, given any x0 ∈ X and any u ∈ U , the
corresponding solution x(·) := x( · ;x0, u) satisfies

|x(t)| ≤ β(‖x0‖, t) + δ1

(∫ t

0

δ2(|u(τ)|)dτ
)
, ∀t ≥ 0.

Note that iISS imposes that the system is forward complete
for each u ∈ U , meaning that xt exists for all t ≥ 0,
as the above state estimate impedes any finite escape time.
Moreover, just like its finite-dimensional counterpart, iISS
guarantees not only that the origin of the input-free system
ẋ(t) = f(xt, 0) is globally asymptotically stable (GAS), but
also induces some robustness with respect to the disturbance
u. In particular, it can be seen that, in response to any input
with finite energy (as measured through the function δ2), the
state eventually converges to the origin:∫ ∞

0

δ2(|u(τ)|)dτ <∞ ⇒ lim
t→∞

‖xt‖ = 0.

C. iISS functionals
We consider two kinds of iISS Lyapunov-Krasovskii func-

tionals: those whose dissipation rate involves the functional
itself (here referred to as “strict iISS LKF”) and those whose
dissipation rate involves merely the present value of the state
norm (“relaxed iISS LKF”).

We start by recalling Driver’s derivative [3]. Given any
continuous function V : X → R, its Driver’s derivative along
(3) is defined, for all φ ∈ X and all v ∈ Rm, as

D+
(3)V (φ, v) := lim sup

h→0+

V (φ∗h,v)− V (φ)

h
, (4)

where, for all h ∈ (0; θ) and all v ∈ Rm, φ∗h,v ∈ X is defined
as

φ∗h,v(s) :=

{
φ(s+ h) if s ∈ [−θ;−h)
φ(0) + f(φ, v)(s+ h) if s ∈ [−h; 0]. (5)

It was shown in [9] that, if V is Lipschitz on any bounded
set of X , then, under the assumptions made above on the
vector field f , Driver’s derivative of V computed at (xt, u(t))
coincides almost everywhere (on the domain of existence of
xt) with the upper-right Dini derivative of t 7→ V (xt):

D+
(3)V (xt, u(t)) = lim sup

h→0+

V (xt+h)− V (xt)

h
, ∀t ≥ 0 a.e.

Definition 2 (Strict/Relaxed iISS LKF) Let V : X →
R≥0 be Lipschitz on any bounded subset of X . Assume there
exists α, α ∈ K∞ such that

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖), ∀φ ∈ X . (6)

Then V is said to be a strict iISS Lyapunov-Krasovskii
functional (LKF) for (3) if there exist α ∈ PD and γ ∈ K∞
such that, for all φ ∈ X and all v ∈ Rm,

D+
(3)V (φ, v) ≤ −α(V (φ)) + γ(|v|). (7)

It is called a relaxed iISS LKF for (3) if it satisfies (6) and,
for all φ ∈ X and all v ∈ Rn,

D+
(3)V (φ, v) ≤ −α(|φ(0)|) + γ(|v|). (8)

In both cases, α and γ are respectively referred to as a
dissipation rate and a supply rate.

The key difference between these two iISS LKF lies in
the nature of the dissipation: a strict iISS LKF dissipates in
terms of the whole LKF itself, whereas a relaxed iISS LKF
dissipates only in terms of the current instantaneous value of
the state norm. In view of (6), any strict iISS LKF is also a
relaxed iISS. Note that this distinction between relaxed and
strict iISS LKF is irrelevant in a finite-dimensional context.

D. Problem statement

It is known from [10] that, if the system (3) admits a strict
iISS LKF, then it is iISS. That result extended the Lyapunov
sufficient condition for iISS of finite-dimensional systems.
For non-delayed systems, this Lyapunov condition turns out
to be also necessary for iISS1 [1].

The sufficient condition for iISS in [10] provides a handy
way to establish iISS of time-delay systems. However, in
order to obtain a dissipation rate that involves the whole LKF,
some mathematical tricks are often needed that complicate
the analysis. More crucially, such a strict LKF is not required
in the absence of inputs. To make this more precise recall that
global asymptotic stability of time-delay systems is defined
as follows.

Definition 3 (GAS) The input-free system

ẋ(t) = f(xt) (9)

is said to be globally asymptotically stable (GAS) if there
exists β ∈ KL such that, for all x0 ∈ X , its solution satisfies

|x(t)| ≤ β(‖x0‖, t), ∀t ≥ 0. (10)
1We are not aware of any extension of such converse results for time-

delay systems, except for particular classes of systems [7].



The classical Lyapunov-Krasovskii condition, recalled in [4,
Theorem 2.1, p.105], states that global asymptotic stability
(GAS) of the input-free system (9) is guaranteed if there
exists a functional V : X → R≥0, Lipschitz on all bounded
subsets of X , such that, for all φ ∈ X ,

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖) (11)

D+
(9)V (φ) ≤ −α(|φ(0)|), (12)

where α, α ∈ K∞, and α ∈ PD.
It is clear from (12) that a point-wise dissipation rate is

enough to show GAS. In order to simplify the analysis and to
homogenize theory with input-free systems, we here address
the question whether a point-wise dissipation rate (namely,
a relaxed iISS LKF) is also enough to establish iISS.

III. MAIN RESUTS

A. A relaxed condition for GAS

We start by observing that GAS can be established by a
weaker requirement than (11)-(12).

Proposition 1 (GAS characterization) The system (9) is
GAS if and only if there exist a functional V : X → R≥0,
Lipschitz on all bounded subsets of X , K∞ functions α and
α, and a KL function σ such that, for all φ ∈ X ,

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖) (13)

D+
(9)V (φ) ≤ −σ(|φ(0)|, ‖φ‖). (14)

The proof lines of this result are provided in Section
V-A. As we will see through an example in Section IV,
this characterization may be handy for instance in situations
where the employed LKF is of the form V = ln(1 + Ṽ ),
where Ṽ denotes another LKF.

B. iISS by point-wise dissipation

Our main result establishes that a point-wise dissipation
rate is enough to guarantee iISS.

Theorem 1 (Relaxed iISS LKF ⇒ iISS) If the system (3)
admits a relaxed iISS LKF, then it is iISS and admits a strict
iISS LKF.

As detailed in Section V-E, this result is actually a
corollary of the following more general statement.

Theorem 2 (Sufficient condition for iISS) Assume that
there exist a functional V : X → R≥0, Lipschitz on each
bounded subset of X , α, α ∈ K∞, and σ ∈ KL such that,
for all φ ∈ X and all v ∈ Rm,

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖) (15)

D+
(3)V (φ, v) ≤− σ(|φ(0)|, ‖φ‖) + γ(|v|). (16)

Then the system (3) is iISS and admits a strict iISS LKF.

The proof is provided in Section V-D. It is made of two
steps. The first one characterizes the internal stability of the
system in terms of a semi-proper iISS LKF. The second one

shows that this characterization combined with a dissipativity
condition is enough to establish iISS. Each of these two steps
lead to results that may be of interest on their own: we treat
them in the following two sections.

C. 0-GAS characterization

Recall that the system ẋ(t) = f(xt, u(t)) is said to be
0-GAS if the input-free system ẋ(t) = f(xt, 0) is GAS. The
following result establishes that 0-GAS is equivalent to the
existence of a semi-proper iISS LKF. The finite-dimensional
counterpart of this result was originally established in [1,
Proposition II.5].

Proposition 2 (0-GAS characterization) The delay system
(3) is 0-GAS if and only if there exist a functional V : X →
R≥0, Lipschitz on each bounded subset of X , a continuously
differentiable class K function π satisfying π′(s) > 0 for all
s ∈ R≥0, α, α, γ ∈ K∞, and α ∈ PD such that

α(‖φ‖) ≤ V (φ) ≤ α(‖φ‖), ∀φ ∈ X , (17)

and the functional W := π ◦ V satisfies, for all φ ∈ X and
all v ∈ Rm,

D+
(3)W (φ, v) ≤ −α(‖φ‖) + γ(|v|). (18)

The proof of this result is provided in Section V-B. It is
worth stressing that, in the above statement, W might not
be radially unbounded (as π might not be a K∞ function),
which is why (18) does not readily guarantee iISS (otherwise
any 0-GAS system would be iISS, which is not true even in
a finite-dimensional context [1]).

It is also important to notice that the dissipation rate in
(18) involves the supremum norm of the state history and that
V is both upper and lower bounded by functions of ‖φ‖. In
particular, using the terminology of e.g. [8], V is a coercive
LKF. These two features are instrumental in establishing
Theorem 1.

D. Link with dissipativity

It turns out that Theorems 1 and 2 are direct consequences
of the result presented next, which establishes iISS based on
the internal stability of the system and a dissipativity property
with respect to the input.

Definition 4 (Zero-output dissipativity) The system (3) is
said to be zero-output dissipative if there exist a functional
V : X → R≥0, Lipschitz on each bounded subset of X , and
class K∞ functions α, α, and µ such that, for all φ ∈ X
and all v ∈ Rm,

α(|φ(0)|) ≤V (φ) ≤ α(‖φ‖)
D+

(3)V (φ,v) ≤ µ(|v|).

This property is a natural extension of its finite-
dimensional counterpart, originally introduced in [1]. It im-
poses that V grows at most linearly in time for any bounded
input u. We underline the fact that, in the above definition,
we do not impose coerciveness on V : it just needs to be



lower bounded by a function of |φ(0)| rather than the whole
supremum norm of the state history ‖φ‖. Here again, this
allows to make use of standard LKF employed in stability
analysis of autonomous systems.

It was shown in [1] that, for finite-dimensional systems,
iISS is guaranteed by zero-output dissipativity, provided that
the system is 0-GAS2. The following result extends this to
time-delay systems.

Theorem 3 (0-GAS + dissipativity ⇒ iISS) If the system
(3) is 0-GAS and zero-output dissipative, then it is iISS and
admits a strict iISS LKF.

The proof is provided in Section V-C. As compared to
Theorem 1, this result allows to conclude iISS for systems
whose internal stability is established by other means than the
construction of a Lyapunov-Krasovskii functional, such as
through Krasovskii-LaSalle invariance principle arguments
[4, Theorem 3.1, p. 119].

IV. EXAMPLE

We provide an academic example in order to illustrate our
findings. Consider the scalar system

ẋ(t) = −x(t) + c x(t+ θ) + x(t)u(t), (19)

with c ≥ 0. In the absence of an input, the system is linear:

ẋ(t) = −x(t) + c x(t+ θ) (20)

and its stability can be assessed by the following LKF:

W (φ) = φ(0)2 + c

∫ 0

−θ
φ(τ)2dτ,

which can be bounded as in (6):

|φ(0)|2 ≤W (φ) ≤ (1 + c θ)‖φ‖2.

Moreover, using the fact that ab ≤ (a2+ b2)/2 for all a, b ∈
R, it holds that

D+
(20)W (φ, 0) =2φ(0)

(
− φ(0) + c φ(−θ)

)
+ c

(
φ(0)2 − φ(−θ)2

)
≤− 2(1− c)φ(0)2.

If c ∈ [0; 1), 0-GAS of (19) follows from [4, Theorem 2.1,
p.105]. However, this LKF is not a strict iISS LKF, as it
dissipates in a point-wise manner, and therefore cannot be
used to invoke existing iISS tools such as [10]. Nevertheless,
it can easily be employed to construct a relaxed iISS LKF.
Indeed, in the presence of an input, it holds that

D+
(19)W (φ, v) ≤ −2(1− c)φ(0)2 + φ(0)2|v|.

Consequently, the functional V := ln(1 +W ) satisfies

D+
(19)V (φ, v) =

D+
(19)W (φ, v)

1 +W (φ)

≤ −2(1− c) φ(0)2

1 + (1 + c)‖φ‖2
+ |v|.

2iISS is actually equivalent to 0-GAS plus zero-output dissipativity for
delay-free systems [1].

Theorem 2 then ensures that (19) is iISS and admits a strict
(hence, a relaxed) iISS LKF.

V. PROOFS

A. Proof of Proposition 1 (sketch)
The necessity part of this statement follows readily from

converse LKF results such as [11, Lemma A.8]3. So we now
focus on showing that (13)-(14) implies GAS. First observe
that stability and boundedness readily hold since D+

(9)V (φ) ≤
0, which ensures from (13) that, for all x0 ∈ X ,

|x(t)| ≤ α−1 ◦ α(‖x0‖), ∀t ≥ 0. (21)

In view of Lemma 2.4 and Corollary 2.6 in [5], GAS as
defined in terms of a KL estimate (Definition 3) follows
if we manage to show that, for all ε > 0 and all R ≥ 0,
there exists a time τ ≥ 0 such that ‖xt‖ ≤ ε for all t ≥ τ
provided that ‖x0‖ ≤ R (this is the formulation of Property
P3 in [5] for autonomous disturbance-free systems). This
attractiveness property can be established following the lines
of the proof for GAS using Lyapunov-Krasovskii approach:
see [4, Theorem 2.1, p. 105]. We do not include details here
due to space limitations.

B. Proof of Proposition 2
We start by showing that (17)-(18) guarantee 0-GAS. This

is done by showing that V is a proper LKF for the input-free
system

ẋ(t) = f(xt, 0). (22)

In view of (4) and (18), it holds that

D+
(22)W (φ) = lim sup

h→0+

W (φ∗h)−W (φ)

h

= lim sup
h→0+

π ◦ V (φ∗h)− π ◦ V (φ)

h

≤ −α(‖φ‖).

This shows in particular that V (φ∗h) ≤ V (φ) for h
small enough. Since π is continuously differentiable, the
mean value theorem guarantees the existence of c(φ, h) ∈
[V (φ∗h);V (φ)] such that

π ◦ V (φ∗h)− π ◦ V (φ) = π′
(
c(φ, h)

)(
V (φ∗h)− V (φ)

)
.

In view of (5), limh→0+ V (φ∗h) = V (φ). Consequently,
limh→0+ π

′(c(φ, h)) = π′ ◦ V (φ). It follows that

D+
(22)W (φ) = π′ ◦ V (φ) lim sup

h→0+

V (φ∗h)− V (φ)

h
≤ −α(‖φ‖).

Recalling that π′(s) > 0 for all s ∈ R≥0, we conclude that

D+
(22)V (φ) = lim sup

h→0+

V (φ∗h)− V (φ)

h

≤ − α(‖φ‖)
π′ ◦ V (φ)

≤ − α(|φ(0)|)
π′ ◦ α(‖φ‖)

3[11] deals with neutral delay systems, but includes systems like (22) as
special cases.



for all φ ∈ X , where we used (17). Let ξ(s) := 1 + s +
maxr∈[0;s] π

′ ◦ α(r) for all s ∈ R≥0. Then ξ is a positive
continuous unbounded function satisfying ξ(·) ≥ π′ ◦ α(·).
It follows that (r, s) 7→ α(r)/ξ(s) is a KL function and

D+
(22)V (φ) ≤ −α(|φ(0)|)

ξ(‖φ‖)
.

Unlike W , V is radially unbounded (the functions α and α
in (17) are of class K∞). GAS of (22) (hence, 0-GAS of (3))
then follows from Proposition 1.

We now proceed to establish the converse. Assume the
delay system (3) is 0-GAS, meaning that the input-free
system (22) is GAS. Then, it holds from [11, Lemma A.8]
that there exists a functional V : X → R≥0, Lipschitz on
each bounded subset of X such that, for all φ ∈ X ,

α(‖φ‖) ≤ V (φ) ≤ α(‖φ‖) (23)

D+
(22)V (φ) ≤ −η(‖φ‖). (24)

for some α, α, η ∈ K∞. Proceeding as in the proof of the
main result in [15], the derivative of this functional along
the solutions of the perturbed system (3) reads

D+
(3)V (φ, v) = lim sup

h→0+

1

h

(
V (φ∗h,v)− V (φ)

)
= lim sup

h→0+

1

h

(
V (φ∗h,0)− V (φ) + V (φ∗h,v)− V (φ∗h,0)

)
≤ D+

(22)V (φ) + lim sup
h→0+

1

h

(
V (φ∗h,v)− V (φ∗h,0)

)
≤ −η(‖φ‖) + lim sup

h→0+

1

h

∣∣V (φ∗h,v)− V (φ∗h,0)
∣∣ . (25)

As observed in e.g. [6], since f and V are Lipschitz on
bounded sets, there exist continuous nondecreasing functions
`V , `f : R≥0 → R≥0 such that, for all φ, ϕ ∈ X and all
u, v ∈ Rm,

|V (φ)− V (ϕ)| ≤ `V (‖φ‖+ ‖ϕ‖)‖φ− ϕ‖ (26)
|f(φ, v)− f(ϕ, u)| ≤ `f (‖φ‖+ ‖ϕ‖+ |u|+ |v|)

× (‖φ− ϕ‖+ |v − u|). (27)

Note that `f and `V can be chosen greater than 1 with no
loss of generality. Based on this, we have the following:∣∣V (φ∗h,v)−V (φ∗h,0)

∣∣ ≤ `V (‖φ∗h,v‖+‖φ∗h,0‖) ‖φ∗h,v − φ∗h,0‖.
In view of (5), ‖φ∗h,v‖ ≤ ‖φ‖ + |f(φ, v)|h. Consequently,
from (27) and the fact that f(0, 0) = 0, it holds that ‖φ∗h,v‖ ≤
‖φ‖+ `f (‖φ‖+ |v|)(‖φ‖+ |v|)h. It follows that∣∣V (φ∗h,v)− V (φ∗h,0)

∣∣ ≤ (28)

`V

(
2‖φ‖+ 2`f (‖φ‖+ |v|)(‖φ‖+ |v|)h

)
‖φ∗h,v − φ∗h,0‖.

In view of (5), φ∗h,v and φ∗h,0 coincide on [−θ;−h). Hence,

‖φ∗h,v − φ∗h,0‖ = sup
s∈[−h;0]

∣∣φ∗h,v(s)− φ∗h,0(s)∣∣
≤ sup
s∈[−h;0]

|f(φ, v)− f(φ, 0)| (h+ s).

Using again (27), we get that

‖φ∗h,v − φ∗h,0‖ ≤ sup
s∈[−h;0]

`f (2‖φ‖+ |v|)|v|(h+ s) (29)

≤ `f (2‖φ‖+ |v|)|v|h. (30)

It then follows from (28) that

lim sup
h→0+

1

h

∣∣V (φ∗h,v)−V (φ∗h,0)
∣∣ ≤ `V (2‖φ‖)`f (2‖φ‖+|v|)|v|.

Plugging this into (25), we obtain that

D+
(3)V (φ, v) ≤ −η(‖φ‖) + `V (2‖φ‖)`f (2‖φ‖+ |v|)|v|.

Since `f is nondecreasing, it holds that `f (a+b) ≤ `f (2a)+
`f (2b) for all a, b ∈ R≥0. Consequently, recalling that `f was
chosen not smaller than 1,

D+
(3)V ≤ −η(‖φ‖) + `V (2‖φ‖)

(
`f (4‖φ‖) + `f (2|v|)

)
|v|

≤ −η(‖φ‖) + `V (2‖φ‖)
(
`f (4‖φ‖) + 1

)
`f (2|v|)|v|.

For future reference, we summarize these findings in the
following statement4, which is an extension of [1, Lemma
IV.10] to time-delay systems.

Proposition 3 (0-GAS characterization) The system (3) is
0-GAS if and only if there exist a functional V : X → R≥0,
Lispchitz on each bounded subset of X , a nondecreasing
continuous function ` : R≥0 → R≥0, and α, α, η, γ ∈ K∞
such that, for all φ ∈ X and all v ∈ Rm,

α(‖φ‖) ≤V (φ) ≤ α(‖φ‖)
D+

(3)V (φ, v) ≤ −η(‖φ‖) + `(‖φ‖)γ(|v|).

Now, consider the continuously differentiable class K
function defined as

π(s) :=

∫ s

0

dr

1 + ` ◦ α−1(r)
,

where α ∈ K∞ is the lower bound on V (see (23)). Note
that π′(s) > 0 for all s ∈ R≥0. Letting W := π ◦ V , we get

D+
(3)W (φ, v) = π′(V (φ))D+

(3)V (φ, v)

≤ −η(‖φ‖) + `(‖φ‖)γ(|v|)
1 + ` ◦ α−1(V (φ))

≤ −α(‖φ‖) + γ(|v|),

where the functions α is defined as

α(s) :=
η(s)

1 + ` ◦ α−1 ◦ α(s)
.

The conclusion follows since α ∈ PD and γ ∈ K∞.

4The sufficiency part of this statement is straightforward.



C. Proof of Theorem 3

The zero-output dissipativity assumption means that there
exist a functional V : X → R≥0, Lipschitz on all bounded
subsets of X , and class K∞ functions α, α, and µ such that,
for all φ ∈ X and all v ∈ Rm,

α(|φ(0)|) ≤ V (φ) ≤ α(φ‖) (31)

D+
(3)V (φ, v) ≤ µ(|v|). (32)

Moreover, since the system is assumed to be 0-GAS, Proposi-
tion 2 guarantees that there exist η ∈ PD, η, η ∈ K, γ ∈ K∞,
and a functional W : X → R≥0, Lipschitz on all bounded
subsets of X , such that, for all φ ∈ X and all v ∈ Rm,

η(‖φ‖) ≤W (φ) ≤ η(φ‖) (33)

D+
(3)W (φ, v) ≤ −η(‖φ‖) + γ(|v|). (34)

Let Ṽ := V +W . Then, Ṽ is Lipschitz on bounded sets of
X and we get from (31) and (33) that

α(|φ(0)|) ≤ Ṽ (φ) ≤ α̃(‖φ‖), (35)

where α̃ := η + α. Moreover, (32) and (34) give that

D+
(3)Ṽ (φ, v) ≤ −η(‖φ‖) + γ(|v|) + µ(|v|)

≤ −η ◦ α̃−1(Ṽ (φ)) + γ(|v|) + µ(|v|). (36)

Observing that α, α̃, and γ + µ are K∞ functions and that
η ◦ α̃−1 ∈ PD, we conclude from (35)-(36) that Ṽ is a strict
iISS LKF for (3) and iISS follows from [10, Theorem 3.7].

D. Proof of Theorem 2

By assumption, there exist a functional V : X → R≥0,
Lipschitz on all bounded subsets of X , α, α, γ ∈ K∞, and
σ ∈ KL such that, for all φ ∈ X and all v ∈ Rm,

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖)
D+

(3)V (φ, v) ≤− σ(|φ(0)|, ‖φ‖) + γ(|v|). (37)

For v = 0, it holds in particular that D+
(3)V (φ, 0) ≤

−σ(|φ(0)|, ‖φ‖). In view of Proposition 1, we conclude that
the input-free system ẋ(t) = f(xt, 0) is GAS; in other words,
the system (3) is 0-GAS. Moreover, it readily holds from (37)
that D+

(3)V (φ, v) ≤ γ(|v|), so the system (3) is zero-ouptut
dissipative. The conclusion then follows from Theorem 3.

E. Proof of Theorem 1

Let V : X → R≥0 be a relaxed iISS LKF, meaning that
there exist α, α, γ ∈ K∞, and α ∈ PD such that, for all
φ ∈ X and all v ∈ Rm,

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖)
D+

(3)V (φ, v) ≤ −α(|φ(0)|) + γ(|v|).

Let σ(r, s) := α(r)
1+s for all r, s ≥ 0. Then σ ∈ KL and

D+
(3)V (φ, v) ≤ −σ(|φ(0)|, ‖φ‖) + γ(|v|).

We can then invoke Theorem 2 to conclude.

VI. CONCLUSION AND PERSPECTIVES

We have shown that a point-wise dissipation rate is enough
to guarantee iISS of time-delay systems. We believe that this
result will simplify the iISS analysis in specific scenarios.
Moreover, it makes the iISS framework more conform to the
existing theory of disturbance-free systems. In establishing
this result, we have in turn provided a relaxed Lyapunov-
Krasovskii characterization of global asymptotic stability and
extended the link between iISS and 0-GAS plus zero-output
dissipativity to time-delay systems.

To the best of our knowledge, the possibility to establish
ISS through a point-wise dissipation rate remains an open
question. Moreover, we are not aware of any result stating
iISS guarantees the existence of a (relaxed) iISS LKF. These
two points would deserve further exploration.
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Wrong ! \eta is not increasing, just PD !
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