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Stabilization of a hyperbolic PDEs-ODE network using a recursive
dynamics interconnection framework

Jean Auriol1, Federico Bribiesca-Argomedo2, Silviu-Iulian Niculescu1 and Jeanne Redaud1

Abstract— In this paper, we design a state-feedback law that
exponentially stabilizes an underactuated network of scalar
hyperbolic systems coupled at the end of the chain with a
finite-dimensional system modeled by an ordinary differential
equation. Our approach uses a recursive dynamics interconnec-
tion framework. More precisely, for each subsystem, we solve
a stabilization problem, a tracking problem and design a state-
predictor. Then, we are able to recursively design a control
law that stabilizes the whole chain. Some illustrative examples
complete the presentation.

I. INTRODUCTION

Interconnected systems represented by Partial Differential
Equations (PDEs) naturally appear when modeling indus-
trial processes. Some well-known examples include traffic
network systems with different types of vehicles [15], [46],
ventilation in buildings [35], density-flow systems [10],
[25], open channels [22], [23], [24], communication net-
works [19]. Additional couplings with Ordinary Differential
Equations (ODEs) arise when there is a lumped element
coupled to the distributed dynamics such as in heavy chain
systems [34], Rijke tubes [17] (where the ODE is sand-
wiched between two PDEs) or mechanical vibrations in
drilling applications [36]. In the last case case, the hyperbolic
PDE system models axial and torsional stress propagation
(with potential discontinuities due to the junctions between
different types of pipes), while the ODE represents the
dynamics of the Bottom hole Assembly (BHA). Several
approaches have been proposed in the literature to stabi-
lize such interconnected systems. Among them, we can
cite PI boundary controllers in the case of fully actuated
networks [10], flatness-based designs [37], or the method of
characteristics for quasilinear hyperbolic systems in a tree-
like networks [23], [44]. Recently, this last approach has
been used in [39] to design output-feedback laws for net-
works of interconnected scalar semilinear PDEs. However,
the proposed state-feedback control law requires solving a
set of PDEs online which is computationally expensive.
Regarding networks of ODEs and PDEs, the backstepping
approach [28] has been shown to be a powerful tool for
the design of explicit stabilizing control laws. It was first
applied to hyperbolic equations in [28] to express the delays
acting on an ODE as PDE states of transport equations.
This led to a new interpretation of the delay-compensating
Finite Spectrum Assignment controller. Based on extensions
of the backstepping technique, more complex stabilization
problems have been progressively solved: non-linear ODEs
with delays [12], ODEs coupled with a beam [45], or velocity
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recirculation in a wave equation [40]. The backstepping ap-
proach has been successfully used in [5], to stabilize a system
of hyperbolic PDEs coupled with an ODE in a PDE-ODE
structure. In the case of a scalar PDE system, [27] solved
a similar problem (with a potentially non-linear ODE) by
solving a tracking problem. The ODE-PDE-ODE structure
has been considered in [43], [18], [20] and recently in [13]
with the design of a strictly proper control design. In recent
contributions [2], the authors have stabilized systems with
a PDE-ODE-PDE structure. Finally, the general problem of
the stabilization of an arbitrary number of interconnected
scalar PDEs has been solved in [4], introducing a complex
backstepping transformation.

So far, one major limitation of the backstepping approach
for the stabilization of general networks of interconnected
ODE-PDE systems is its lack of genericity, i.e., the involved
backstepping transformations are specific to the system under
consideration. More precisely, adding a new subsystem into
the network implies designing a completely new backstep-
ping transformation to encompass this new subsystem.
In other research fields, such as electronics [3] or bio-
engineering [38], [41], as well as in the process industry [29],
modular approaches have been developed in order to effi-
ciently model complex interconnected systems.

In this paper, we develop a new recursive interconnected
dynamics framework to design an explicit state-feedback
control law that stabilizes a network of interconnected scalar
linear hyperbolic systems coupled with an ODE at the end
of the chain. Roughly speaking, the proposed control law is
recursively obtained by considering stabilizing virtual inputs
for each subsystems and by ensuring the outputs of each sub-
system converge to these desired virtual inputs. The control
design becomes simpler and is based on simple assumptions
that can be independently verified for each subsystem. This
new framework allows for a “plug-and-play”-like approach to
control design since additional subsystems, satisfying similar
conditions, can be added to the network using the same
procedure.

The approach followed in this paper consists on solv-
ing three independent problems for each subsystem: (i)
a stabilization problem, (ii) a delayed-trajectory tracking
problem and (iii) building a predictor for the system. If we
consider the specific case of the last subsystem (the one
furthest in the chain from the control action), it means in
particular that we know an input that stabilizes it. Then we
are able, using the second-to last subsystem, to track this
desired signal (with inevitable delay due to finite speeds of
propagation, which is compensated using the predictor of
the last subsystem). Iterating this procedure, at each step we
know a control input that solves the stabilization problem for
all downstream subsystems and we use the current subsystem
to track this trajectory, compensating the inevitable delay
using the predictor for the downstream subsystem, which is



constructed using a composition of the subsystem predictors.
This paper is structured as follows: in Section II, the

control problem is presented, as well as the general ideas
behind our new recursive dynamics interconnection frame-
work. In Section III, we present necessary conditions to
apply this framework and show that for the class of systems
under consideration, they are always satisfied. We design
the stabilizing control law in Section IV and present some
simulation results in Section V.

II. PROBLEM DESCRIPTION

A. System under consideration
We consider in this paper a system composed of a

chain of n > 1 subsystems interconnected through their
boundaries. Each subsystem consists of two coupled linear
hyperbolic PDEs, except for the last one that can be an
ODE. This class of system may appear when considering
oil production systems made of networks of pipes (whose
principal line is known as the manifold) [33]. More precisely,
the lower part of the drill-string is usually made up of drill
collars that can have a great impact on the global dynamics
due to their inertia [1]. In particular, these pipes may have
different lengths, density, inertia or Young’s modulus. These
spatial variations in the characteristic line impedance may
cause reflections to appear in the junctions. Each subsystem
(except for the last one) is defined by the following set of
PDEs (i ∈ {1, · · · , n− 1})

∂tui(t, x) + λi∂xui(t, x) = σ+
i (x)vi(t, x), (1)

∂tvi(t, x)− µi∂xvi(t, x) = σ−i (x)ui(t, x), (2)

evolving in {(t, x) s.t. t > 0, x ∈ [0, 1]}, where λi > 0
and µi > 0 are the constant transport velocities respectively
associated to equations (1) and (2), and where the in-domain
coupling terms σ+

i and σ−i are continuous functions. The
associated initial conditions are denoted u0

i (·) = ui(0, ·)
and v0

i (·) = vi(0, ·) and are defined in L2([0, 1],R). These
subsystems are connected through their boundary conditions,
which satisfy

ui(t, 0) = qi,ivi(t, 0) + qi−1,iui−1(t, 1) + δi1V (t), (3)

and

vi(t, 1) = ρi,iui(t, 1) + ρi,i+1vi+1(t, 0) + δin−1CX(t) (4)

where the different coupling and ρij are constant and
where V is a real-valued control input. By convention q0,1 =
0 and ρn−1,n = 0. The notation δij stands for the Kronecker
symbol (i.e. δij = 1 if i = j, and δij = 0 if i 6= j). The last
subsystem is an ODE defined by

Ẋ(t) = AX(t) +Bun−1(t, 1), (5)

where the matrices A ∈ Rp×p, B ∈ Rp×1, C ∈ R1×p are
constant. The initial condition X0 = X(0) belongs to Rp.
The well-posedness of system (1)-(5) is guaranteed by [9,
Theorem A.6, page 254]. The system (1)-(5) is schematically
pictured in Figure 1. The advantage of such a representation
is that it highlights that the interaction between the different
subsystems only occurs at the boundaries (black arrows). For
instance, the output of the second subsystem entering the
first subsystem could be seen as a kind of disturbance acting
on the first subsystem (even if such a disturbance signal is
indirectly modified by the corresponding output of the first

subsystem). For a subsystem i, we will call the subsystem
i + 1 the downstream subsystem and i − 1 the upstream
subsystem.

V (t) System 1 System 2 System n

Fig. 1. Schematic representation of the system under consideration (1)-(5)

B. Problem formulation
The objective of this paper is to exponentially stabilize

system (1)-(5) using the available control V (t). The sta-
bilization is done in the sense of the Ξ-norm defined by
||(u, v,X)||Ξ = (

∑n−1
i=1 ||ui||2L2 + ||vi||2L2 + ||X||2Rp)

1
2 . This

problem has already been solved in [4] for the case of a chain
of PDEs (no ODE at the end of the chain). The method
presented in [4] uses a triangular integral transformation
to move most of the in-domain couplings at the actuated
boundary. We believe that such an approach could be ad-
justed to the presence of the ODE. However, this would
require deriving and solving a new set of complex kernel
equations. Generally speaking, the approach proposed in
[4] cannot be straightforwardly extended when adding new
blocks inside the chain that have a different structure (i.e.
adding ODEs in the chain or PDEs that have a different
number of states). This explains why here, we develop a
new recursive dynamics interconnection framework. Based
on simple conditions placed on each independent subsystem,
we derive a recursive control law that stabilizes the intercon-
nected system (1)-(5). The main advantage of the proposed
methodology is its potential extension to arbitrary chains of
ODEs and PDEs. Moreover, the conditions derived in this
paper are less restrictive than those used in [4].

C. Description of the method
The recursive dynamics interconnection framework we

develop in this paper is based on a recursive approach.
Considering the last subsystem as an independent system,
we design a theoretical input that stabilizes it. This input
is a state-feedback law that only depends on the last sub-
system’s state. Then, we consider the penultimate subsystem
as an independent system only disturbed by the downstream
subsystem’s action. This penultimate subsystem acts on the
last subsystem through its right output. For this system, we
can design a (virtual) control input that stabilizes the system
in the absence of the disturbance and, more importantly,
that guarantees the convergence of its right output to the
theoretical control law that stabilizes the last subsystem.
Such a control law guarantees the stabilization of the last
subsystem and finally of the penultimate subsystem. Due to
the hyperbolic systems’ transport structure, such a tracking
control law may require a prediction of the downstream
subsystem’s state. Iterating such a procedure, it is possible to
design a stabilizing control law V (t) for the whole system.

One of the main advantages of such an approach is that,
provided we can solve each subsystem’s tracking prob-
lem, and correctly predict each subsystem’s state (which
is possible for ODEs and hyperbolic PDEs), it becomes
straightforward to add new subsystems. This results in a
simpler and more generic control design procedure than the
one developed in [4].



III. CONDITIONS TO DEVELOP A RECURSIVE DYNAMICS
INTERCONNECTION FRAMEWORK

In this section, we introduce several assumptions that
are necessary to apply our new control framework. They
correspond to a set of simple and natural conditions defined
for each subsystem of (1)-(5). We show that these conditions
are always satisfied for the class of systems we consider. In
the next section, we will show that under these assumptions
it becomes straightforward to stabilize the system (1)-(5). We
start giving the following definition to qualify the interactions
between the different subsystems.

Definition 1: For a subsystem i < n, we denote V̂i(t)
the action of the (i − 1)th subsystem on this subsystem.
This function will be called virtual input acting on the ith
subsystem. We also denote χi(t) the action of the (i+ 1)th

subsystem on the ith subsystem. This function will be called
virtual disturbance acting on the ith subsystem.
This terminology is justified by the recursive dynamics
interconnection framework we develop since each subsystem
is stabilized using its leftward neighbor. With these nota-
tions, we have for instance V̂2(t) = q2,1u1(t, 1), χ2(t) =
ρ2,3v3(t, 0), χn−1(t) = CX(t). For the last subsystem
(ODE) we do not have any virtual output or virtual distur-
bance and we denote V̂n(t) = un−1(t, 1). These different
notations are summarized in Figure 2.

System i
V̂i(t)

χi−1(t)

V̂i+1(t)

χi(t)

Fig. 2. Schematic representation of the interactions between the different
subsystems

We are now ready to give the different assumptions for
each subsystem and show that they are always satisfied.

A. Delay-robustness assumption
The first assumption we make aims to guarantee the

existence of robustness margins for the closed-loop system.
Assumption 1: The open loop system (1)-(5) (i.e. V (t) ≡

0) in the absence of in-domain coupling terms (i.e. σ·i ≡ 0)
and of the ODE (i.e X ≡ 0) is exponentially stable (in the
sense of the L2 norm).
It has been shown in [31] that a necessary condition to
guarantee the existence of robustness margins for an arbitrary
closed-loop system is that the open-loop transfer function
must have a finite number of poles on the closed right half-
plane. For a deeper discussion of the sensitivity wrt the
delay parameter, the reader is referred to [32]. It is worth
mentioning that for the system (1)-(5), [5], [8] proved that
this implies that the open-loop system without in-domain
couplings and without the ODE must be exponentially stable.
Some explicit conditions to verify such an assumption can
be found in [8] and [4]. Consequently, Assumption 1 is not
restrictive as it is necessary for the existence of robustness
margins for the closed-loop system.

B. Stabilizability of each subsystem
The second assumption we make guarantees the possibility

to independently stabilize each subsystem.
Assumption 2: In the absence of the virtual disturbance

χi (i.e. χi(t) ≡ 0), the ith subsystem subject to the virtual

actuation V̂i must be stabilizable by a state-feedback law.
More precisely, if i < n (resp. i = n), there exist a linear
operator Ki : (L2([0, 1]))2 → R (resp. Kn : Rp → R)
such that V̂i = Ki(ui, vi) (resp. V̂n = Kn(X)) stabilizes the
system in the absence of the virtual disturbance.
This assumption is natural, since to stabilize our intercon-
nected system for any initial condition, we need to have
each subsystem independently stabilizable. For the ODE to
be stabilizable, we must have the existence of a matrix K
such that A+BK is Hurwitz. (i.e. has all its eigenvalues in
the complex left half plane). Indeed, if V̂n(t) = KX(t), then
the ODE system is stabilized. Let us now consider the ith-
subsystem (i ∈ {1, 2, · · · , n− 1}) with the virtual actuation
V̂i(t). Assuming that χi(t) ≡ 0, this PDE system rewrites

∂tui(t, x) + λi∂xui(t, x) = σ+
i (x)vi(t, x) (6)

∂tvi(t, x)− µi∂xvi(t, x) = σ−i (x)ui(t, x), (7)

with the boundary conditions

ui(t, 0) = qi,ivi(t, 0) + V̂i(t), (8)
vi(t, 1) = ρi,iui(t, 1). (9)

Let us consider the following backstepping transformation
adjusted from [6], [16], [42] and defined as(

αi(t, x)
βi(t, x)

)
=

(
ui(t, x)
vi(t, x)

)
−
∫ 1

x

(
Kuu
i (x, y) Kuv

i (x, y)
Kvu
i (x, y) Kvv

i (x, y)

)(
ui(t, y)
vi(t, y)

)
dy, (10)

where the kernels K ··i are L∞ functions defined on the upper
triangular part of the unit square T = {(x, y) ∈ [0, 1]2, x ≤
y}. They satisfy the following set of equations

λi∂xK
uu
i (x, y) + λi∂yK

uu
i (x, y) = −σ−i (y)Kuv

i (x, y),

(11)
λi∂xK

uv
i (x, y)− µi∂yKuv

i (x, y) = −σ+
i (y)Kuu

i (x, y),
(12)

µi∂xK
vu
i (x, y)− λi∂yKvu(x, y) = σ−i (y)Kuv

i (x, y), (13)
µi∂xK

vv
i (x, y) + µi∂yK

vv(x, y) = σ+
i (y)Kuv

i (x, y), (14)

Kuv
i (x, x) = − σ+

i

λi + µi
, Kuv

i (x, x) =
σ−i

λi + µi
, (15)

Kuu
i (x, 1) = ρi,i

µi
λi
Kuv
i (x, 1),Kvv(x, 1) = 0. (16)

It has been proved in [16], [42] that this set of equations ad-
mits a unique solution. Defining V̂ BSi

.
= Ki(ui(t, ·), vi(t, ·))

(and therefore defining the operators Ki in Assumption 2) as

V̂ BSi (t) = −qi,ivi(t, 0) +

∫ 1

0

Kuu
i (0, y)ui(t, y)dy

+

∫ 1

0

Kuv
i (0, y)vi(t, y)dy, (17)

the transformation (10) maps the system (6)-(9) to the target
system

∂tαi(t, x) + λi∂xαi(t, x) = 0, (18)
∂tβi(t, x)− µi∂xβi(t, x) = λiK

vu(x, 1)ρiαi(t, 1), (19)

with the boundary conditions

αi(t, 0) = 0, βi(t, 1) = ρi,iαi(t, 1). (20)



This target system is exponentially stable. This in turns
implies the exponential stability of the original system due
to the invertibility of the transformation (10). However, it is
worth mentioning that the control law V̂ BSi (t) cancels the
boundary reflection terms. As shown in [6], this may lead
to vanishing delay margins. To avoid this problem and make
the control law strictly proper, we can combine it with a
well-tuned low pass filter as done in [7].

C. Output tracking in presence of a disturbance signal

The proposed approach requires each subsystem to be able
to track any arbitrary function. More precisely, we have the
following assumption

Assumption 3: Consider a subsystem i < n and define
Φi ∈ L2

loc(R+) an arbitrary known function. Let us assume
that the virtual disturbance χi acting on this subsystem is
known. Then, there exists a control law V̂i that exponentially
tracks the function V̂i+1(t) to the desired function Φi(t).
Moreover, if χi(t) ≡ Φi(t) ≡ 0, then, such a control law
stabilizes the ith subsystem. More precisely, there exist linear
causal operators Li, such that V̂i(t) = Ki(ui(t, ·), vi(t, ·)) +
Li(Φi(t + 1

λi
), χi([t, t + 1

λi
])), with the operators Ki being

defined in Assumption 2 and (17), and the operators Li
defined later in this section.

The function V̂i+1(t) (virtual input of the (i+1)th subsystem)
corresponds to the right output of the subsystem i. The fact
that the operators Li require future values of the Φi and χi is
related to the transport delay to go from the left boundary of
the PDE (where is the actuation) to the right boundary (where
is defined the output we want to track). This assumption does
not have to be fulfilled for the last subsystem (i.e. for the
ODE), as explained in Section II-C. Since the function V̂i+1

is defined by V̂i+1(t) = qi,i+1ui(t, 1) (with the convention
qn−1,n = 1), we are led to the following condition: for all
1 < i ≤ n, we have qi−1,i 6= 0. Indeed, if it is not the case,
we cannot track any arbitrary function since the output will
always be zero. Regarding our class of PDEs subsystems
we can adjust the approach presented in [26] to solve
this tracking problem. More precisely, in the presence of a
disturbance χi(t) acting on the ith system, the transformation
(10) maps the system (6)-(9) to the target system

∂tαi + λi∂xαi = −µiKuv
i (x, 1)χi(t) (21)

∂tβi − µi∂xβi = λiK
vu
i (x, 1)αi(t, 1), (22)

with the boundary conditions

αi(t, 0) = V tri (t), (23)
βi(t, 1) = ρi,iαi(t, 1) + χi(t). (24)

where we have defined V tri (t) = V̂i(t) − V BSi (t). The
backstepping transformation (10) does not modify the func-
tion ui(t, 1). Indeed, we have V̂i+1(t) = qi+1,iui(t, 1) =
qi+1,iαi(t, 1) (with the convention qn,n−1 = 1). Applying
the method of characteristics on equation (21), we have

αi(t, 1) = V tri (t− 1

λi
)

− µi
∫ 1

λi

0

Kuv
i (x− λis, 1)χi(t− s)ds. (25)

Thus, we can simply choose V̂ tri
.
= Li(Φi(t+ 1

λi
), χi([t, t+

1
λi

])) (fixing the operators Li in Assumption 3) as

V̂ tri (t) =
1

qi+1,i
Φi(t+

1

λi
)

+ µi

∫ 1
λi

0

Kuv
i (1− λis, 1)χi(t+

1

λi
− s)ds, (26)

to guarantee the convergence of yi(t) = ui(t, 1) = αi(t, 1)
to Φi(t). If the functions Φi and χi converge to zero, so does
the state αi(t, 1) and so does the whole ith-subsystem due
to its transport structure.

D. Prediction of the state
The tracking operators Li require future values of the

functions Φi and χi. Since these functions depend on the
states of the downstream subsystems, we must be able to
predict future values of these states. This leads us to the
following assumption.

Assumption 4: For all x ∈ [0, 1], it is possible to obtain
a
∑i−1
j=1

1
λj

+ x
λi

units of time ahead prediction of the PDE
states ui(t, x) and vi(t, x), and a

∑n−1
j=1

1
λj

+ x
λi

units of
time ahead prediction of the ODE X . More precisely there
exist predictor functions Pvi , Pui and PX such that for all
t > 0, Pvi(t, x) = vi(t +

∑i−1
j=1

1
λj

+ x
λi
, x), Pui(t, x) =

ui(t+
∑i−1
j=1

1
λj

+ x
λi
, x), PX(t) = X(t+

∑n−1
j=1

1
λj

).

Let us explicitly design these predictors. In what follows,
to avoid useless case disjunctions, we use the convention
ρn−1,n = C and vn(t, 0) = X . Applying the transformation
(10) to each subsystem (6)-(9), we obtain the target system

∂tαi(t, x) + λi∂xαi(t, x) =f+
i (x)vi+1(t, 0) (27)

∂tβi(t, x)− µi∂xβi(t, x) =f−i (x)ui(t, 1), (28)

with the boundary conditions

αi(t, 0) = qi,ivi(t, 0) + qi,i−1ui−1(t, 1) + δi1V (t)

+

∫ 1

0

Lααi αi(t, ξ) + Lαβi βi(t, ξ), (29)

βi(t, 1) = ρi,iαi(t, 1) + ρi,i+1vi+1(t, 0) + δin−1CX. (30)

where we recall that the kernels L··i are the inverse kernels
of the kernels K ··i (see [16], [42] for details), and where
we have defined f−i (x) = λiK

vu
i (x, 1) and f+

i (x) =
−µiρi,i+1K

uv
i (x, 1). With these definitions, equations (27)-

(28) correspond to the tracking system (21)-(22). To these
PDEs, we add the ODE (5). Note that we decided to preserve
the terms ui(t, 1) and vi(t, 0) inside the target systems
to avoid adding integral terms in α and β. We will first
design a predictor for the states ui(t, 1), vi(t, 0), αi(t, 0)
and X(t) and show that these predictors give us the wanted
predictor for the whole original states. Using the method of
characteristics, we have for i < n+ 1

ui(t, 1) =αi(t−
1

λi
, 0)

+

∫ 1
λi

0

f+
i (1− νλi)vi+1(t− ν, 0)dν, (31)

(for i = n − 1, the term vi+1(t, 0) has to be replaced by
X(t)). Following the approach given in [8] (we choose to



skip the complete proof here, due to space restrictions), we
obtain

vi(t, 0) = ρi,iui(t−
1

µi
, 1) + ρi,i+1vi+1(t− 1

µi
, 0) +

∫ τi

0

g1
i (ν)

αi(t− ν, 0) + g2
i (ν)ui(t− ν, 1) + g3

i (ν)vi+1(t− ν, 0)dν.
(32)

where τi = 1
λi

+ 1
µi

and where the functions g1
i , g2

i and g3
i

are defined by

g1
i (ν) = −1[0, 1

λi
](ν)λiL

βα
i (0, λiν), (33)

g2
i (ν) = 1[0, 1

µi
](ν)(f−i (µiν)− µiρi,iLββi (0, 1− µiν)

−
∫ 1−µiν

0

Lββi (0, ξ)f−i (ξ + µiν)dξ) (34)

g3
i (ν) = −1[0, 1

µi
](ν)(µiρi,i+1L

ββ
i (0, 1− µiν))

− 1[0, 1
λi

](ν)(

∫ 1

λiν

Lβαi (0, ξ)f+
i (ξ − λiν)dξ), (35)

where 1Ω denotes the characteristic function of the set Ω.
Similarly, we obtain

αi(t, 0) = qi,ivi(t, 0) + qi,i−1ui−1(t, 1) + δ1
i V (t)

+

∫ τi

0

k1
i (ν)αi(t− ν, 0) + k2

i (ν)ui(t− ν, 1)dν

+

∫ τi

0

k3
i (ν)vi+1(t− ν, 0)dν. (36)

where the functions k1
i , k2

i and k3
i are defined by

k1
i (ν) = 1[0, 1

λi
](ν)λiL

αα
i (0, λiν), (37)

k2
i (ν) = 1[0, 1

µi
](ν)(µiρi,iL

αβ
i (0, 1− µiν)

+

∫ 1−µiν

0

Lαβi (0, ξ)f−i (ξ + µiν)dξ) (38)

k3
i (ν) = 1[0, 1

µi
](ν)(µiρi,i+1L

αβ
i (0, 1− µiν))

+ 1[0, 1
λi

](ν)(

∫ 1

λiν

Lααi (0, ξ)f+
i (ξ − λiν)dξ). (39)

We can now define the state predictors Pαi(t, s), Pvi(t, s),
Pvi(t, s) and PX(t, s) (see [11], [14]). Let us define τ =∑
i τi as the total transport delay. Inspired by [7], let us

define for t ≥ 0 and s ∈ [t−τ −
∑i−1
j=1

1
λj
, t],Pαi(t, s) (resp.

Pvi(t, s)) as the state prediction of αi(t, 0), (resp. vi(t, 0)),
ahead a time

∑i−1
j=1

1
λj

, for s ∈ [t−τ−
∑i
j=1

1
λj
, t], Pui(t, s)

as the state prediction of ui(t, 1), ahead a time
∑i
j=1

1
λj

,
and for s ∈ [t − τ −

∑n−1
j=1

1
λj
, t], PX(t, s) as the state

prediction of X(t), ahead a time
∑n−1
j=1

1
λj

. They are defined
by the set of equations (40)-(43). From these definitions, we
immediately have

Pαi(t, s) = αi(s+

i−1∑
j=1

1

λj
, 0), s ∈ [t− τ −

i−1∑
j=1

1

λj
, t],

(44)

Pvi(t, s) = vi(s+

i−1∑
j=1

1

λj
, 0), s ∈ [t− τ −

i−1∑
j=1

1

λj
, t],

(45)

Pui(t, s) = ui(s+

i∑
j=1

1

λj
, 1), s ∈ [t− τ −

i∑
j=1

1

λj
, t],

PX(t, s) = X(s+

n−1∑
j=1

1

λj
), s ∈ [t− τ −

n−1∑
j=1

1

λj
, t]. (46)

From these predictions, it is straightforward to obtain the
predictions of the states αi(t, x) and βi(t, x), using the fact
that αi(t, x) = αi(t − x

λi
, 0) +

∫ x
λi

0 f+
i (x − λiν)vi+1(t −

ν, 0)dν, and

βi(t, x) = ρi,iui(t−
1− x
µi

, 1) + ρi,i+1vi+1(t− 1− x
µi

, 0)

+

∫ 1−x
µi

0

f−i (x+ µiν)ui(t− ν, 1)dν.

Finally, using the invertibility of the backstepping transfor-
mation (10), we obtain the desired predictions for the original
PDE and ODE states.

IV. STATE FEEDBACK CONTROL LAW

We now have all the tools to apply our recursive dynamics
interconnection framework.

Theorem 1: For i ∈ [1, n− 1], let us define the following
sequences

V̂n(t) = Kn(PX(t−
n−1∑
j=1

1

λj
)), (47)

χn−1(t) = CPX(t−
n−1∑
j=1

1

λj
), (48)

V̂i(t) = Ki(Pui(t−
i−1∑
j=1

1

λj
− x

λi
, x), Pvi(t−

i−1∑
j=1

1

λj

− x

λi
, x)) + Li(V̂i+1(t+

1

λi
), χi(t+

1

λi
)), (49)

χi−1(t) = ρi−1,iPvi(t−
i−1∑
j=1

1

λj
, 0), i > 1, (50)

where the operators Ki are defined in Assumption 2, the
operators Li are defined in Assumption 3 and the predictors
Pui , Pvi and PX are defined in Assumption 4. Then, the
control law V (t) = V̂1(t) exponentially stabilizes the system
(1)-(5) in the sense of the Ξ-norm.

Proof: The control law V (t) is well-defined and causal,
due to the definition of the different predictors (Assump-
tion 4.) Then, applying Assumption 3 on each subsystem, we
obtain that un−1(t, 1) exponentially converges to Kn(X(t)).
Consequently, X(t) exponentially converges to zero. Using
Assumption 3, we can recursively show that each subsystem
exponentially converges to zero starting from i = (n − 1).
This concludes the proof.
One major advantage of the proposed framework and of
the recursive design proposed in Theorem 1 is that it can
easily be extended to different classes of subsystems (ODEs,
non-scalar PDEs), as long as Assumptions 1, 2, 3, 4 can
be verified. One must be aware that Theorem 1 completely
neglects the robustness aspects of the system. More precisely,
the operators K we have designed in Section 2 cancel all
the boundary reflection terms and may not be strictly proper



Pαi(t, s) =



αi(s+

i−1∑
j=1

1

λj
, 0) if s ∈ [t− τ −

i−1∑
j=1

1

λj
, t−

i−1∑
j=1

1

λj
]

qi,iPvi(t, s) + qi,i−1Pui−1(t, s) + δ1i V (s) +

∫ τi

0

k1i (ν)Pαi(t, s− ν) + k2i (ν)Pui(t, s− ν −
1

λi
) + dν

+

∫ τi

0

k3i (ν)Pvi+1(t, s− ν −
1

λi
)dν otherwise,

(40)

Pvi(t, s) =



vi(s+

i−1∑
j=1

1

λj
, 0) if s ∈ [t− τ −

i−1∑
j=1

1

λj
, t−

i−1∑
j=1

1

λj
]

ρi,i+1Pvi+1(t, s−
1

λi
− 1

µi
) + ρi,iPui(t, s−

1

λi
− 1

µi
) +

∫ τi

0

g1i (ν)Pαi(t, s− ν) + g2i (ν)Pui(t, s− ν −
1

λi
)dν

+

∫ τi

0

g3i (ν)Pvi+1(t, s− ν −
1

λi
)dν otherwise,

(41)

Pui(t, s) =


ui(s+

i∑
j=1

1

λj
, 0) if s ∈ [t− τ −

i∑
j=1

1

λj
, t−

i∑
j=1

1

λj
]

Pαi(t, s) +

∫ 1
λi

0

f+
i (1− νλi)Pvi+1(t, s− ν)dν otherwise,

(42)

PX(t, s) =


X(s+

n−1∑
j=1

1

λj
) if s ∈ [t− τ −

n−1∑
j=1

1

λj
, t−

n−1∑
j=1

1

λj
]

e
A

∑n−1
j=1

1
λj (X(s) +

∫ s+
∑n−1
j=1

1
λj

s

eA(s−ν)BPun−1(t, ν −
n−1∑
j=1

1

λj
)dν) otherwise.

(43)

(that may lead to zero robustness margins as shown in [6]).
However, due to Assumption 1, it is possible to low-pass
filter these operators and make them strictly proper, as done
in [7].

V. APPLICATIONS

A. Simulation results
The proposed control law has been tested in simulations

using Matlab. The PDE systems are simulated using a classi-
cal finite volume method based on a Godunov scheme [30].
We used 61 spatial discretization points (and a CFL number
of 1). The predictors are implemented using a backward
Euler approximation of the integral terms. The numerical
values used are: n = 3, λ1 = 1, λ2 = 2, µ1 = 1.3, µ2 = 1.8,
σ+

1 = 1, σ−1 = 0.4, σ+
2 = −0.3, σ−2 = 0.7, q11 = 0.5, q12 =

0.3, q22 = 0.2, ρ11 = 0.275, ρ12 = 0.4, ρ22 = 0.4, A =
0.1, B = 0.1, C = 0.1 These coefficients are chosen such
that the whole system is unstable in open-loop. We have
pictured in Figure 3 the evolution of the Ξ-norm of the
system in open-loop and in closed-loop. As expected, the
proposed control law guarantees the exponential stability.
Note that the control law has been filtered by a low-pass
filter to guarantee the existence of robustness margins. The
important amplitude of the norm of the closed-loop system
during the transient is due to the important initial value
of the ODE (compared to the values of the PDEs states).
Compensating this state implies propagating it through the
different PDEs, which may create an artificial high norm
during the transient.

B. Illustrative example
Since the control law resulting from our recursive dynam-

ics framework requires the knowledge of all the state, it is yet
unusable for practical applications. However, combined with
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Fig. 3. Evolution of the Ξ-norm of the open-loop system (1)-(5) and of
the closed-loop system using the control law defined in Theorem 1

a state observer, it could be applied to industrial problems.
More precisely, using the mathematical model proposed by
[1], [21], our framework could help controlling drilling
devices.

VI. CONCLUDING REMARKS

In this paper, we have designed a full-state feedback
control law that stabilizes a network of interconnected scalar
linear hyperbolic systems coupled with an ODE at the end of
the chain. We propose a recursive dynamics interconnection
framework that consists of solving simpler tracking and state-
prediction problems for each subsystem. Then, it becomes
possible to design a stabilizing control law for the whole
system recursively. The proposed control law can be low-
pass filtered in order to guarantee the existence of robustness



margins. We believe that this new approach can be easily
adapted to stabilize more general classes of interconnected
systems due to its relative simplicity (as opposed to starting a
new design with an ad hoc transformation). In future works,
we will consider the design of a state-observer. It is a crucial
step to obtain an output-feedback law. Such an observer
should encompass the prediction of the state. We will also
consider a more general class of networks, for which we may
have non-scalar PDE subsystems or for which we have ODE
subsystems between two PDE subsystems.
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