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Bondonc, Márton Ispányd, Milena Machado Meloa, Faradiba Sarquise

aFederal Institute of Espirito Santo, IFES, Brazil
bFederal University of Espirito Santo, PPGEA-CT-UFES, Brazil
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Abstract

This paper introduces a new class of models for non-negative integer-valued time

series with a periodic and seasonal autoregressive structure. Some properties of

the model are discussed and the conditional quasi-maximum likelihood method

is used to estimate the parameters. The consistency and asymptotic normality

of the estimators are established. Their performances are investigated for finite

sample sizes and the empirical results indicate that the method gives accurate

estimates. The proposed model is applied to analyse the daily number of antibi-

otic dispensing medication for the treatment of respiratory diseases, registered

in a health center of Vitória, Brazil.
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1. Introduction

The study of medicine dispensing has become an important research topic

since it can be very useful for public health actions such as to control and detect

epidemic diseases, to promote public health education campaign, to reduce cost,

to improve the quality of care, to propose intervention strategies, among others;

see, for example, [1]. The papers [2], [3], [4], [5], [6] are some recent publications

related to this subject.

The model proposed in this paper is mainly motivated by the analysis of

the count time series of the daily number of people who received antibiotics for

respiratory diseases treatment from public health care system in the emergency

service in the region of Vitória-ES (Brazil). Since the respiratory diseases are

strongly correlated to air pollution levels and weather conditions, the correlation

structure of the daily number of people who received antibiotics presents, among

other phenomena, periodicity and seasonality.

A count time series may be represented by the integer-valued autoregressive

(INAR) class of models, for example, the INAR processes with autoregressive

order 1 (INAR(1)), which was initially introduced in [7] and, independently,

in [8]. The INAR(1) model has been widely investigated from theoretical and

applied point of views. More recently one can cite, for example, [9], [10] and

[11]. The two former papers presented inferential aspects of INAR(1) process

for zero-inflated time series and the latter used this model to fit heavy-tailed

count time series.

The INAR(1) model is based on the thinning operator, defined as follows,

see [12]. Let Y be a Z+-valued random variable (r.v.) and α ∈ [0, 1]. The

binomial thinning operator ◦ is defined as

α ◦ Y =

Y∑
i=1

Ui(α), (1)

where {Ui(α)}i∈N is a sequence of independent identically distributed (i.i.d.)

r.v.’s which are Bernoulli distributed with parameter α. It is assumed that the

sequence {Ui(α)}i∈N is independent of Y . Note that the empty sum is set to 0 if
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Y = 0. The sequence {Ui(α)}i∈N is called a counting process. The probability

of success in the thinning is P(Ui(α) = 1) = α and, conditionally on Y , α ◦ Y is

distributed according to the binomial distribution Bin(Y, α). For more details

on thinning based count time series models see, e.g., [13] in the univariate and

[14] in the multivariate case, respectively.

An extension of the INAR(1) model that takes into account the p-th order

autoregressive structure is the INAR(p), introduced in [15] and, independently

in [16]. The authors in [15] introduced a model for count time series that has

a correlation structure similar to the correlation structure of a conventional

ARMA(p, p− 1) model for continuous data. Du and Li [16] suggested a model

based on a process with a correlation structure identical to the correlation struc-

ture of a standard AR(p) model.

In [16], despite its flexibility in dealing with higher order autoregressive pro-

cesses, the INAR(p) model does not account for the periodic phenomenon, which

is a quite common time series characteristic in many areas of application, espe-

cially, in the air quality and health area. Stochastic processes with periodically

varying mean, variance and covariance were introduced in [17] and are usually

called periodically correlated (PC) processes. The occurrence of PC processes in

time series is corroborated by real applications in many practical situations, see,

e.g., [18]. Basawa and Lund [19] studied the asymptotic properties of parameter

estimates for specific periodic autoregressive moving-average (PARMA) models

among others. Recently, robust estimation methods for periodic autoregressive

(PAR) models were applied to air pollution data in [20] and [21].

Even though there are many studies in the literature that focus on PC pro-

cesses, most of them are dedicated to the analysis and applications for discrete

time processes with continuous marginal distributions, like the PARMA model.

The analysis of PC count time series was discussed in [22], [23], [24], [25], [26]

and [27]. Monteiro et al. [22] introduced the periodic INAR(1) (PINAR(1))

model and addressed some statistical properties of the parameter estimation to-

gether with some finite sample size investigations. However, the paper did not

explore the model in a practical problem. Sadoun and Bentarzi [23] provided
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efficient estimation methods of a PINAR(1) model. Morina et al. [24] presented

an INAR(2) model with seasonal behavior in the immigration to analyze the

number of hospital emergency service arrivals caused by diseases. Bourguigon

et al. [25] introduced a seasonal INAR model of order 1. In [26], the model dis-

cussed in [25] was generalized in the sense that the autoregressive parameters

vary by seasons and the immigration processes are allowed to be intra-seasonally

dependent. Liu et al. [27] proposed a generalization of the r states random en-

vironment INAR(1) model, introduced in [28], to predict time series of counts

with small values and notable fluctuations.

The interest of using INAR processes in count time series and their exten-

sions, from theoretical and applied point of views, is still a growing subject in

the literature with a large field of applications. For example, recently, Ben-

tarzi and Aries [29] introduced the periodic integer-valued ARMA(p, q) model,

denoted by PINARMAS(p, q), and established the consistency and the asymp-

totic normality of the quasi maximum likelihood estimator. This model is also

considered here, in the application section, for comparison purpose.

This paper is dedicated to introduce a new class of models called PINAR(1, 1S)

extending the ones in [24] and [22], in order to deal with Z+-valued time series

with a periodic and seasonal autoregressive structure. The theoretical properties

of the proposed model such as existence, uniqueness and periodic stationarity

conditions are established as well as the asymptotic properties of the condi-

tional quasi-maximum likelihood (CQML) estimator. The model is tested with

the real data set of dispensed medications and is shown to outperform the other

competitive existing models.

The paper is organized as follows. Section 2 introduces the model and its

properties. The estimation method and the forecast are shown in Section 3.

Section 4 presents finite sample size investigation. Section 5 deals with a real

application and conclusions are presented in Section 6. The proofs appear in

the Appendix.
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2. The PINAR(1, 1S) model

In the following, {Yt}t∈Z is a stochastic count process with periodic char-

acteristics of period S, S ∈ N, defined on a probability space (Ω,A,P), and

depending on an unknown parameter vector ϑ. We denote by Ft the sigma

field generated by the r.v.’s Yl for l ≤ t, and by E(·) and E(·|·), the expectation

and conditional expectation, respectively, under the probability measure P and

the true parameter vector ϑ0. The time index t may be written, by Euclidean

division, as t = kS + ν, where ν = 1, . . . , S and k ∈ Z. For example, in the case

of daily data studied here, S = 7, ν and k represent the day of the week and

the week, respectively.

Definition 1. {Yt}t∈Z is said to be a periodic Z+-valued process with period

S ∈ N and autoregressive orders (1, 1S), and is denoted by PINAR(1, 1S), if it

satisfies the following stochastic recursion

YkS+ν = αν ◦ YkS+ν−1 + βν ◦ YkS+ν−S + εkS+ν , (2)

where k ∈ Z, ν = 1, . . . , S, αν , βν ∈ (0, 1) are the autoregressive coefficients dur-

ing the season ν. The immigration process {εt}t∈Z is a sequence of independent

Z+-valued r.v.’s such that for each ν = 1, . . . , S, the r.v.’s {εkS+ν}k∈Z are iden-

tically distributed with mean E(εkS+ν) = λν , and finite variance Var(εkS+ν) =

σ2
ν > 0. In addition, it is assumed that εt is independent of Yt−1, αν ◦ Yt−1,

Yt−S and βν ◦ Yt−S and all counting processes are mutually independent.

In this paper, we assume that {Yt}t∈Z satisfies (2) where {εt}t∈Z is Pois-

son distributed. Then σ2
ν = λν and {Yt}t∈Z depends on the unknown 3S-

dimensional parameter vector ϑ = (α1, β1, λ1, . . . , αS , βS , λS)>, where “>”

means transpose. As can be seen, for each seasonal period ν, Yt has three

random components; the elements of the immediate past Yt−1 with survival

probability αν , the elements of the seasonal past Yt−S with survival proba-

bility βν and the immigration εt which entered in the system in the interval

(t− 1, t]. Moreover, the autoregressive parameters αν , βν and the immigration

mean λν change periodically according to the seasonal period S. Observe that
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the above model extends the models introduced in [24] and [22]. For example,

the autoregressive coefficients in [24] are fixed, whereas they vary periodically

in the PINAR(1, 1S) model. The existence and uniqueness properties of the

PINAR(1, 1S) process can be obtained analogously as the standard PC ARMA

process introduced in [19], and using the properties of the multivariate integer-

valued autoregressive process (MGINAR(p)) introduced in [14]. Following the

same lines of the matrix representation of the PARMA process in [19] and the

MGINAR(p) model, some properties of model (2) are now discussed.

Let A = [ai,j ] and B = [bi,j ] be the S × S matrices with non-negative

elements defined by

aij =

αi if i = j + 1,

0 otherwise,

and bij =


βi if i = j,

α1 if i = 1, j = S,

0 otherwise.

(3)

A is strictly lower triangular and B is upper triangular. Let Y k = (YkS+1, . . . ,

YkS+S)>, εk = (εkS+1, . . . , εkS+S)>, and A◦ = [ai,j◦], B◦ = [bi,j◦] be matricial

binomial thinning operators [14, Definition 2.1]. The action of A◦ on Y k is

defined by

A ◦ Y k = A ◦


YkS+1

...

YkS+S

 =


∑S
j=1 a1,j ◦ YkS+j

...∑S
j=1 aS,j ◦ YkS+j


Using (2), the following stochastic equation holds

Y k = A ◦ Y k +B ◦ Y k−1 + εk, (4)

where A and B are defined by (3). All the counting sequences involved in the

thinning operators ai,j◦ and bi,j◦, for 1 ≤ i, j ≤ S, are mutually independent

and are independent of the sequence {εt}t∈Z. For a strictly lower triangular non-

negative matrix M and a Z+-valued random vector Y , define (I −M) ◦ Y :=

Y −M ◦ Y . Then, (4) can be written as

(I −A) ◦ Y k = B ◦ Y k−1 + εk,
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which can be considered as the state-space representation of the PINAR(1, 1S)

process with analogy to the state-space representation of a PARMA process see,

e.g., [19, Equation (2.3)].

Now, suppose that {Y k}k∈Z has a constant mean vector µ for all k ∈ Z.

Using [14, Lemma 2.1] and taking the expectation of (4), we get that

µ = (A+B)µ+ λ,

which can be written

(I − (A+B))µ = λ, (5)

or equivalently,

(I −A)µ = Bµ+ λ.

I−A is a lower triangular non-singular matrix whose inverse A∗ = [a∗ij ], is given

by

a∗ij =


1 if i = j,∏i
k=j+1 αk if i > j,

0 if i < j.

Then, (2) is equivalent to

µ = A∗Bµ+A∗λ,

that is,

(I −A∗B)µ = A∗λ. (6)

The existence of a non-negative solution µ to (5) and (6) depends on the

spectral properties of the matrices A + B and A∗B, respectively. One can see

that A + B is a Perron-Frobenius matrix, i.e., non-negative and irreducible,

see [30, Definition 6.2.22]. Let ρ(M) denote the spectral radius of a matrix

M of dimension S × S, which is the maximum eigenvalue in modulus of M .

By [31, Theorem 2.1], a necessary and sufficient condition for a solution µ

(µ ≥ 0, 6= 0), where 0 is a S-dimensional vector of zeros, to (5) to exist for

any λ (λ ≥ 0, 6= 0) is that ρ(A + B) < 1. Note that, since S ≥ 2, from the

Perron-Frobenius Theorem [30, Theorem 8.4.4], ρ(A+B) > 0 and ρ(A+B) is
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an algebraically simple eigenvalue of A+B. The condition ρ(A+B) < 1 implies

that
∑∞
k=1(A+B)k converges to (I − (A+B))−1, see [30, Theorem 5.6.15 and

Corollary 5.6.14]. Thus, condition ρ(A + B) < 1 assures the invertibility of

I−(A+B) and the non-negativity of its inverse, see [32, page 100]. In addition,

µ = (I−(A+B))−1λ is the unique solution to (5). Similarly, ρ(A∗B) < 1 assures

the invertibility of I −A∗B and the non-negativity of its inverse which is given

by the convergent infinite series
∑∞
k=1(A∗B)k. Moreover, µ∗ = (I−A∗B)−1A∗λ

is the unique solution to (6). One can prove that µ = µ∗ and ρ(A+ B) < 1 is

equivalent to ρ(A∗B) < 1.

Assumption 1. The matrices A and B satisfy ρ(A+B) < 1.

Remark 1. Note that ρ(A + B) < 1 is equivalent to : (a) the roots of the

determinant equation det(zI − (A+B)) = 0, z ∈ C, are less than 1 in modulus,

and, (b) the roots of the characteristic polynomial P (z) =
∏S
j=1(z − βj) −∏S

j=1 αj , z ∈ C, lie inside the complex unit circle.

The following lemma can be proved following the same lines as [14, Section 3].

Lemma 1. Under Assumption 1, there exist a unique Z+-valued strictly pe-

riodically stationary ergodic process {Yt}t∈Z satisfying (2) and such that εt is

independent of Yu, t > u.

Example 1. Consider the case when βj = 0 for all j = 1, . . . , S. Then the

PINAR(1, 1S) model reduces to the PINAR(1)S model introduced in [22]. The

characteristic polynomial of this model simplifies to P (z) = zS −
∏S
j=1 αj and

the condition ρ(A+B) < 1 is equivalent to
∏S
j=1 αj < 1. Note that

∏S
j=1 αj is

the spectral radius of the matrix A defined in [22, page 1531].

Example 2. Consider the case S = 2, i.e., the PINAR(1, 12) model. Then

A =

 0 0

α2 0

 , A∗ =

 1 0

α2 1

 , B =

β1 α1

0 β2

 .
The characteristic polynomial is given by P (z) = (z − β1)(z − β2) − α1α2. By

solving the characteristic equation, it can be seen that β1+β2−β1β2+α1α2 < 1
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is a necessary and sufficient stationarity condition. Note that this condition can

be rewritten as α1α2 < (1− β1)(1− β2).

Proposition 1. Let {Yt}t∈Z be the periodic Z+-valued process defined by (2).

Then, the periodic autocovariance functions γi(h) = Cov(Yt, Yt−h), t ≡ (i

mod S), i = 1, . . . , S, satisfy the resursion

γi(h) = αiγi−1(h− 1) + βiγi(h− S),

where γ0 = γS in case of i = 1.

The marginal distribution of {Yt}t∈Z satisfies

P (YkS+ν = m) =

∞∑
b1,b2=0

pν(m|b1, b2)P (YkS+ν−1 = b1, YkS+ν−S = b2),

where m ∈ Z+ and pν(m|b1, b2) = P (Yt = m|Yt−1 = b1, Yt−S = b2) for each

ν = 1, . . . , S. When S = 1, (2) defines the standard INAR(1) model and {Yt}t∈Z
follows a Poisson distribution when {εt}t∈Z is Poisson distributed. When S > 1,

it can be shown that the unconditional mean and variance of Yt are not equal in

general, so that the marginal stationary distribution of Yt is no longer Poisson

even though the innovations are. However, an approximation to a Poisson dis-

tribution can be achieved if αν · βν ≈ 0 and Yt becomes large, as an application

of the law of small numbers (the law of large numbers for the case of small

expectation), see [33, 34].

Proposition 2. Given the starting values Y1, . . . , YS, the conditional joint prob-

ability is given by

P (YT = yT , . . . , YS+1 = yS+1|YS = yS , . . . , Y1 = y1) =

S∏
ν=1

n−1∏
k=1

pν(ykS+ν |ykS+ν−1, ykS+ν−S).
(7)

Since {εt}t∈Z is Poisson distributed, the conditional probability pν(·|·, ·) in
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(7) is given by

pν(yt|yt−1, yt−s) = [Bin(yt−1, αν) ∗ Bin(yt−s, βν) ∗ Poi(λν)](yt) =∑
(c1,c2)∈J

(
yt−1
c1

)
αc1ν (1− αν)yt−1−c1

(
yt−s
c2

)
βc2ν (1− βν)yt−s−c2

λyt−c1−c2ν

(yt − c2 − c1)!
e−λν , (8)

where ∗ denotes the convolution, and the index set J is defined by J =

{(c1, c2) ∈ Z2
+|c1 ≤ yt−1, c2 ≤ yt−s, c1 + c2 ≤ yt}. Note that the definition

of J depends on the values yt, yt−1, yt−s.

3. Estimation and Forecasting

3.1. The CQML estimator

Let ϑ = (ϑ>1 , . . . , ϑ
>
S )> be the 3S-dimensional unknown parameter vector

of the PINAR(1, 1S) model, where ϑν = (αν , βν , λν)> and ϑ lies in the open

set Θ = ((0, 1)2× (0,∞))S , which contains the true unknown parameter vector,

denoted by ϑ0 = ((ϑ01)>, . . . , (ϑ0S)>)>. Let Y1, . . . , YT be a sample of size T =

nS from the PINAR(1, 1S) process. Conditioned on the first S observations,

the CQML estimator suggested here is based on the likelihood type penalty

function given in [35, Equation 3.2.61]. This function is

Ln(ϑ) =

n−1∑
k=1

S∑
ν=1

[log{fk,ν(ϑν)}+ (YkS+ν −mk,ν(ϑν))2f−1k,ν(ϑν)],

where

mk,ν(ϑν) = E(YkS+ν |FkS+ν−1) = ανYkS+ν−1 + βνYkS+ν−S + λν (9)

is the conditional mean and

fk,ν(ϑν) = E
[
{YkS+ν −mk,ν(ϑν)}2

∣∣FkS+ν−1]
= αν(1− αν)YkS+ν−1 + βν(1− βν)YkS+ν−S + λν

(10)

is the conditional variance. Note that mk,ν(ϑν) and fk,ν(ϑν) are almost surely

three times continuously differentiable in the open set Θ containing the true pa-

rameter value ϑ0. This is one condition stated in [35, Theorem 3.2.26] to obtain
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the asymptotic property of the CQLM estimator established in Theorem 1. Let

ln,ν(ϑν) =

n−1∑
k=1

[log{fk,ν(ϑν)}+ (YkS+ν −mk,ν(ϑν))2fk,ν(ϑν)−1]

=

n−1∑
k=1

φk,ν(ϑν). (11)

Then Ln(ϑ) =
∑S
ν=1 ln,ν(ϑν) is minimized to obtain the CQML-estimator

ϑ̂
CQML

n of ϑ0. Observe that the minimization of Ln(ϑ) can be done separately

by minimizing ln,ν(ϑν) for each season ν = 1, . . . , S, i.e, by solving the equations

∂

∂ϑν
ln,ν(ϑν) = 0, ν = 1, . . . , S.

For each ν = 1, . . . , S, we define the matrix Mν of dimension 3× 3 by

Mν = U−1ν VνU
−1
ν ,

where

Vν = E

{
∂

∂ϑν
φk,ν(ϑ0ν)

∂

∂ϑ>ν
φk,ν(ϑ0ν)

}
and

Uν = E

{
∂2

∂ϑν∂ϑ>ν
φk,ν(ϑ0ν)

}
.

The asymptotic covariance matrix M of the CQML estimator of the parameters

of the PINAR(1, 1S) process is given by

M = diag{M1, . . . ,MS}. (12)

Theorem 1. Under assumption 1, {Yt}t∈Z defined by (2) is a strictly periodi-

cally stationary ergodic process with finite fourth-order moment and the CQML

estimator ϑ̂
CQML

n is asymptotically normal distributed,

n1/2(ϑ̂
CQML

n − ϑ0)
D−→ N (0,M)

when n→∞, where M is the matrix of dimension 3S × 3S defined by (12).

Corollary 1. ϑ̂
CQML

n is a consistent estimator of ϑ0.

11



3.2. Forecasting

Let Y1, . . . , YT be a sample from a PINAR(1, 1S) process with n complete

periods of size S, i.e., T = nS, n ∈ N. The forecasting method discussed here

is an extension of the approach presented in [16, Section 5]. The minimum

variance predictor of YT+1, denoted by ŶT (1), is given by

ŶT (1) = E(YT+1|FT ) = α1YT + β1YT−S+1 + λ1.

For any h ∈ N with h = kS + ν, the minimum variance predictor of YT+h can

be calculated as

ŶT (h) = E(YT+h|FT ) = E(αν ◦ YT+h−1|FT ) + E(βν ◦ YT+h−S |FT ) + λν .

We have

E(αν ◦ YT+h−1|FT ) = E(E(αν ◦ YT+h−1|FT+h−1)|FT ) = ανE(YT+h−1|FT )

and

EE(YT+h−1|FT ) =

ŶT (h− 1) if h > 1,

YT+h−1 if h = 1.

Similarly,

E(βν ◦ YT+h−S |FT ) =

βν ŶT (h− S) if h > S,

βνYT+h−S if 1 ≤ h ≤ S.

The forecasting of YT+h can be obtained recursively as

ŶT (h) = αν ŶT (h− 1) + βν ŶT (h− S) + λν ,

where ŶT (h) := YT+h for h = 0,−1, . . . ,−S + 1.

Since εν ∼ Poi(λν), the probability distribution of ŶT (h) conditional to FT ,
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can be computed similarly to (8). For example, if h = 2, it is given by

pT (YT+2 = yT+2|FT ) = pT (YT+2 = yT+2|YT = yT , YT−S+2 = yT−S+2,

YT−S+1 = yT−S+1) =

=
∑

(m,n,r)∈J

(
yT
m

)
(α2α1)m(1− (α2α1))yT−m

(
yT−S+2

n

)
βn2 (1− β2)yT−S+2−n

(
yT−S+1

r

)
(α2β1)r(1− α2β1)yT−S+1−r λ

YT+2−m−n−r
T+2

(YT+2 −m− n− r)!
e−λT+2 ,

where λT+2 := α2λ1 + λ2 and the index set J is defined by J = {(m,n, r) ∈

Z3
+|m ≤ yT , n ≤ yT−S+2, r ≤ yT−S+1,m + n + r ≤ yT+2}. Note that the

binomial coefficients α2β1, β2 and α2α1 in the above formula form the non-zero

entries of the second row of the matrix A∗B.

4. Monte Carlo simulations

The performance of the CQML method is investigated here for a small sam-

ple size T = nS generated from a PINAR(1, 1S) model with S = 4, 7, and

{εt}t∈Z is Poisson distributed. The parameters to be estimated and T are dis-

played in tables. The empirical bias and mean square error (MSE) correspond

to the mean of 1000 replications. All simulations were carried out using the R

software.

Tables 1 and 2 display the results for S = 4 and S = 7, respectively. In table

2 the true parameter vector is ϑ0 = (0.31, 0.27, 4.00, 0.35, 0.25, 3.30, 0.29, 0.26,

2.1, 0.29, 0.39, 2.50, 0.37, 0.27, 3.10, 0.29, 0.22, 2.60, 0.28, 0.33, 3.50)>. As was ex-

pected, in general, the performance of CQML estimator presents estimates quite

accurate even for a small sample size. By increasing n, the quantities bias and

MSE of the estimates decrease, which corroborates the theoretical results in

Theorem 1 Since the parameters αν and βν , for each ν, correspond to the coeffi-

cients of linear relation between Yt, Yt−1 and Yt−S , respectively, their estimates

perform nearly identical, that is, they present similar MSE. On the other hand,

although the estimates of λν also present accurate results, these are not pre-

cisely in terms of MSE as the ones of αν and βν . This fact may be mainly due
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to the minimization algorithm to estimate λν , which is not linearly related to

the observations Yt. In practice, however, it may not be a big concern. Other

parameter values were also considered in the simulation study and, in general,

the conclusions were quite similar to those reported here. These results are

available upon request.

5. Real data application

The time series of counts refers to the daily number of people who got an-

tibiotics for the treatment of respiratory problems from the public health care

system in the emergency service of the region of Vitória-ES, Brazil. This real

data set was obtained from the network records system welfare of the munici-

pality and corresponds to the period of May 26, 2013 to September 05, 2015,

resulting in T = 833 daily (n = 119 weeks) observations. The series displayed in

Figure 1 contains persistence oscillation, that is, the mean changes periodically.

This is clearly evidenced in the plots of the sample autocorrelation function

(ACF), as discussed below.

Figure 1: Daily number of people who received antibiotics for the treatment of respiratory

problems from the public health care system in the emergency service of the region of Vitória-

ES.

Figure 2 shows the sample periodic mean and variance of the series over

seasons ν = 1, . . . , 7, the sample ACF and the periodogram of the series. The

analysis of the sample ACF suggests that this series has seasonal autocorrela-

14



Table 1: Results of the simulation to estimate the parameters of the PINAR(1, 14) model

with sample size T = 200, 800 and 2000 values. The true parameter vector is ϑ0 =

(0.10, 0.47, 4.00, 0.42, 0.25, 3.00, 0.23, 0.36, 2.00, 0.39, 0.30, 1.00)>. Inside parenthesis is the

MSE of each estimator.

n = 50, T = 200 n = 200, T = 800 n = 500, T = 2000

BiasCQML BiasCQML BiasCQML

α1 0.025 -0.002 -0.004

(0.018) (0.005) (0.003)

α2 0.021 0.007 -0.004

(0.014) (0.004) (0.002)

α3 0.009 0.002 0.001

(0.013) (0.003) (0.001)

α4 0.004 0.006 0.000

(0.010) (0.002) (0.001)

β1 -0.028 -0.008 0.002

( 0.015) (0.003) (0.001)

β2 -0.024 -0.007 -0.005

(0.017) (0.004) (0.002)

β3 -0.035 -0.006 -0.003

(0.017) (0.004) (0.002)

β4 -0.011 -0.005 -0.003

(0.015) (0.004) (0.002)

λ1 0.081 0.085 -0.008

(1.324) (0.278) (0.151)

λ2 0.003 0.017 0.068

(1.427) (0.342) (0.157)

λ3 0.11 0.005 0.015

(1.16) (0.208) (0.091)

λ4 0.058 -0.02 0.01

(0.455) (0.096) (0.042)
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Table 2: Results of the simulation to estimate the parameters of the PINAR(1, 17) model.

Inside the parenthesis is the MSE of each estimate.
n = 50, T = 350 n = 100, T = 700 n = 200, T = 1400

Pars BiasCQML BiasCQML BiasCQML

α1 0.017 0.005 0.003

(0.021) (0.009) (0.002)

α2 0.013 0.011 0.004

(0.017) (0.007) (0.001)

α3 0.003 0.006 0.000

(0.011) (0.006) (0.001)

α4 0.005 0.007 0.003

(0.019) (0.009) (0.001)

α5 0.012 -0.001 0.002

(0.016) (0.007) (0.002)

α6 0.004 0.002 0.001

(0.013) (0.006) (0.001)

α7 0.012 0.010 0.004

(0.019) (0.010) (0.002)

β1 -0.032 -0.010 -0.003

(0.019) (0.008) (0.001)

β2 -0.017 -0.014 -0.006

(0.016) (0.009) (0.002)

β3 -0.038 -0.009 0.001

(0.018) (0.008) (0.002)

β4 -0.028 -0.012 -0.006

(0.018) (0.007) (0.001)

β5 -0.034 -0.008 -0.001

(0.018) (0.008) (0.002)

β6 -0.016 -0.010 0.000

(0.016) (0.009) (0.002)

β7 -0.019 -0.011 0.003

(0.017) (0.008) (0.001)

λ1 0.139 0.052 0.002

(2.096) (0.920) (0.166)

λ2 0.036 0.014 0.016

(1.997) (0.849) (0.177)

λ3 0.188 0.012 0.013

(1.194) (0.581) (0.096)

λ4 0.170 0.046 0.024

(1.110) (0.522) (0.090)

λ5 0.177 0.083 -0.024

(1.269) (0.662) (0.120)

λ6 0.069 0.044 -0.001

(1.048) (0.594) (0.108)

λ7 0.047 0.045 -0.046

(1.431) (0.639) (0.121)
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tion of period S = 7 which is an expected result since the series corresponds

to daily data. The periodogram provides high peak at frequency 0.14, which

corresponds to the period=1/0.14 = 7. The AR order identification per season

ν = 1, . . . , 7 is identified by finding the lowest lag for which the sample periodic

partial autocorrelation (PePACF) function cuts off ([36]). Tables 3 and 4 present

the sample periodic autocorrelation (PeACF) and PePACF functions. In these

tables, the values in bold are the sample ACFs that exceeded the confidence

intervals given below. The approximate limits of the confidence intervals used

in ACF and PACF tables were constructed for a significance level of 5%. This

preliminary model identification step reinforces that a periodic INAR model

could be adequate to capture the dynamic of the data.

Figure 2: The periodic mean and periodic variance over the seasons ν = 1, . . . , 7, the sample

ACF and the periodogram of {Yt}.

Based on the above discussion, the PINAR(1, 17) Poisson model was used

to fit the data. For comparison purpose, three periodic models for count time

series were considered. Namely, the standard PINAR(1) Poisson model, the
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Table 3: Periodic ACF of the real data set.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

ν = 1 0.01 0.26 0.18 0.24 0.28 0.11 0.15 0.02 0.07 0.29

ν = 2 0.38 -0.12 0.14 0.23 0.18 0.19 0.29 0.13 -0.11 0.04

ν = 3 0.33 0.34 -0.02 0.10 0.23 0.39 0.42 0.18 0.37 0.03

ν = 4 0.27 0.05 0.17 0.10 0.16 0.33 0.29 0.23 0.14 0.14

ν = 5 0.18 0.36 0.23 0.31 0.01 0.18 0.29 0.22 0.25 0.11

ν = 6 0.25 0.16 0.20 0.14 0.16 0.17 0.18 0.30 0.23 0.13

ν = 7 0.20 0.10 -0.03 -0.05 −0.18 0.03 0.30 0.10 -0.07 0.16

Table 4: Periodic PACF of the real data set.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

ν = 1 0.01 0.26 0.12 0.20 0.18 0.00 0.03 -0.02 -0.01 0.16

ν = 2 0.38 -0.14 0.08 0.18 0.07 0.01 0.22 -0.06 -0.08 -0.02

ν = 3 0.33 0.24 0.00 -0.00 0.15 0.32 0.29 0.01 0.26 0.04

ν = 4 0.27 -0.04 0.10 0.10 0.11 0.27 0.18 0.03 0.09 -0.07

ν = 5 0.18 0.33 0.13 0.18 0.01 0.10 0.17 0.04 0.02 -0.02

ν = 6 0.25 0.12 0.10 0.06 0.03 0.18 0.08 0.18 0.13 -0.05

ν = 7 0.20 0.05 -0.07 -0.11 −0.21 0.08 0.26 0.03 -0.13 0.21
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PINARMAS(p, q) Poisson model discussed in [29], and the periodic integer-

valued generalized autoregressive conditional heteroskedastic, PINGARCHS(1, 1)

model introduced in [37]. For the PINAR(1, 17) and PINARMA7(7, 0) models,

the parameters were estimated using the CQML estimation method. To esti-

mate the parameters of the PINAR(1) and PINGARCHS(1, 1) models, the con-

ditional maximum likelihood estimation was used since this method is the one

suggested by their respective authors. The Akaike information criterion (AIC)

and the Bayesian information criterion (BIC) were calculated for the four mod-

els. For the PINAR(1, 17), PINAR(1), PINARMA7(7, 0) and PINGARCH7(1, 1)

models, the pair (AIC, BIC) were (7812.33, 2363.47), (7906.29, 2378.19),(7889.95,

2552.59) and (8385.84, 2936.99), respectively. Based on these quantities, the

best model to fit the data is the PINAR(1, 17). In addition, the residuals of the

PINAR(1), PINARMA7(7, 0) and PINGARCH7(1, 1) models were not accurate,

which corroborates the conclusion drawn from the AIC and BIC criteria.

The estimates of the parameters of the PINAR(1, 17) model are displayed

in Table 5. The standard errors (in parenthesis) were calculated using the in-

verse of the corresponding Hessian matrix. Figure 3 displays the 95% confidence

intervals of the estimates using the asymptotic normal theory discussed in The-

orem 1. The residuals of the model were computed by

rt = yt − ŷt = yt − α̂νyt−1 − β̂νyt−7 − λ̂ν ,

where t = 7k + ν, k = 1, . . . , 118 and ν = 1, . . . , 7. Tables 6 and 7 display the

values of PeACF and PePACF functions of the residuals, respectively. We see

from these tables that the periodic correlations at lags 1 and 7 were removed

and no systematic patterns are observed. The fitted model seems to well capture

the main dynamics of the data.

Therefore, it is expected that the estimated model can be useful to provide

reliable forecasts. For example, Figure 4 shows the one-step ahead forecasts for

the last week of the data. The model to run the forecast was fitted without these

observations and presented similar estimates to results displayed in Table 5.
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Table 5: Application of PINAR(1, 17) model to the real data. The parameters were estimated

by CQML method. The standard errors of the estimates are inside parenthesis.

Fitted model ν=1 ν=2 ν=3 ν=4 ν=5 ν=6 ν=7

PINAR(1, 17)-Poisson Innovation:

αν 0.095(0.039) 0.012(0.074) 0.209(0.045) 0.211(0.061) 0.133(0.060) 0.083(0.056) 0.126(0.045)

βν 0.192(0.047) 0.108(0.054) 0.217(0.055) 0.280(0.056) 0.150(0.061) 0.169(0.053) 0.097(0.051)

λν 3.031(0.360) 8.209(0.654) 3.364(0.551) 4.361(0.562) 6.182(0.616) 6.739(0.640) 5.649(0.562)

Table 6: Periodic ACF of residuals of the PINAR(1, 17) model.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

ν = 1 -0.02 0.11 -0.11 -0.02 -0.16 0.02 -0.06 0.06 −0.20 0.15

ν = 2 -0.04 0.21 0.04 0.13 0.13 0.04 -0.04 0.02 -0.05 0.21

ν = 3 0.00 -0.09 -0.00 0.15 0.06 -0.03 0.01 0.01 -0.03 0.01

ν = 4 -0.07 0.13 0.01 -0.05 0.01 0.26 0.05 -0.13 0.26 0.05

ν = 5 -0.02 -0.10 0.05 0.08 0.04 0.27 -0.06 0.07 0.11 0.04

ν = 6 -0.09 0.23 0.08 0.27 -0.04 0.11 -0.07 0.11 0.08 0.03

ν = 7 -0.07 0.05 0.09 0.04 0.03 0.16 -0.07 0.21 0.13 0.02

Table 7: Periodic PACF of residuals of the PINAR(1, 17) model.

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

ν = 1 -0.02 0.11 -0.10 -0.04 −0.19 -0.00 -0.06 0.05 -0.13 0.14

ν = 2 -0.04 0.21 0.06 0.13 0.10 0.05 -0.08 -0.02 -0.03 0.15

ν = 3 0.00 -0.09 -0.00 0.17 0.07 -0.07 -0.02 -0.04 -0.04 -0.01

ν = 4 -0.07 0.13 0.01 -0.08 0.00 0.25 0.04 -0.10 0.27 0.05

ν = 5 -0.02 -0.10 0.05 0.07 0.03 0.28 -0.03 -0.01 0.09 -0.04

ν = 6 -0.09 0.23 0.09 0.26 -0.02 0.08 -0.07 0.01 0.06 0.07

ν = 7 -0.07 0.04 0.11 0.06 0.04 0.16 -0.07 0.17 0.17 -0.01
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Figure 3: 95% confidence intervals of the estimates.
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6. Conclusion

The PINAR(1, 1S) model with Poisson innovations was introduced and its

main properties were established. The CQML estimation method was proposed

and a simulation study was carried out to investigate its finite sample properties.

The CQML method presented good performances in simulations.

For the very small sample size n = 50, the estimates of the parameter λ

were not so much accurate. Therefore, we have also considered an empirical

simulation study using the methods proposed in [22] and [29], which make use

of the conditional Poisson distribution. Our simulations indicated that the

methods performed quite similarly which corroborates the use of the proposed

estimation method even when dealing with a time series with small sample size

in a real application. These results are available upon request.

The time series of counts of the daily number of people who received an-

tibiotics for the treatment of respiratory problems from the public health care

system in the emergency service of the region of Vitória-ES (Brazil) was the

main motivation for introducing the PINAR(1, 1S) model. The PINAR(1, 17)

model was able to capture the main dynamic of this real data.

The PINAR(1, 1S) model can be extended to more complicated periodic

count time series and can be an interesting tool in practical studies, for example,

to better understand the behavior dynamic of drug dispensing over time.
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Appendix

The following lemma contains properties of the binomial thinning operator.

Lemma 2. Let Y and Z be Z+-valued r.v.’s and α, β ∈ [0, 1]. Let F ⊂ A denote

a sub-sigma field and Y,Z be F-measurables. If the counting sequences involved

in the thinning operators α◦ and β◦ are mutually independent and independent

of F , then

P 1 Conditionally on Y , α ◦ β ◦ Y ∼ Bin(Y, αβ), i.e., α ◦ β ◦ Y d
= (αβ) ◦ Y .

P 2 a) E(α ◦ β ◦ Y |F) = αβY ,

b) Var(α ◦ β ◦ Y |F) = αβ(1− αβ)Y ,

c) E((α ◦+β◦)Y |F) = (α+ β)Y ,

d) Var((α ◦+β◦)Y |F) = (α(1− α) + β(1− β))Y .

P 3 a) E(α ◦ β ◦ Y ) = αβE(Y ),

b) Var(α ◦ β ◦ Y ) = αβ(1− αβ)E(Y ) + (αβ)2 Var(Y ),

c) E((α ◦+β◦)Y ) = (α+ β)E(Y ),

d) Var((α ◦+β◦)Y ) = (α(1− α) + β(1− β))E(Y ) + (α+ β)2 Var(Y ).

P 4 a) E(α ◦ Y + β ◦ Z|F) = αY + βZ,

b) Var(α ◦ Y + β ◦ Z|F) = α(1− α)Y + β(1− β)Z,

c) E(α ◦ Y + β ◦ Z) = αE(Y ) + βE(Z),

d) Var(α ◦ Y + β ◦ Z) = α(1 − α)E(Y ) + β(1 − β)E(Z) + α2 Var(Y ) +

2αβ Cov(Y,Z) + β2 Var(Z).
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Proof of Lemma 2. (P1) Conditionally on F , α◦Y defined in (1), follows a

Bin(Y, α), for any α ∈ [0, 1]. Therefore, P1 is easily obtained. (P2) The first two

statements follow from (P1) and the independence of the thinning operators.

The last two statements are a direct consequence of the definition of the thinning

operator. (P3) comes from (P2) by the law of total variance. Finally, (P4) can

be proved as (P2) and (P3).

Proof of Proposition 1. By (2) and bilinearity of covariance, we have for

all h > 0,

Cov(Yt, Yt−h) = Cov(αi ◦ Yt−1, Yt−h) + Cov(βi ◦ Yt−S , Yt−h) + Cov(εt, Yt−h).

Since εt is independent of Yt−h, Cov(εt, Yt−h) = 0. Using the law of total

covariance, we get

Cov(αi◦Yt−1, Yt−h) = E(Cov(αi◦Yt−1, Yt−h|Ft−1))+Cov(E(αi◦Yt−1|Ft−1),E(Yt−h|Ft−1)).

(13)

Since

Cov(αi◦yt−1, yt−h) = E((αi◦yt−1)yt−h)−E(αi◦yt−1)E(yt−h) = yt−h(αiyt−1)−(αiyt−1)yt−h = 0,

the first term in (13) equals zero. Since E(αi ◦ Yt−1|Ft−1) = αiYt−1 and

E(Yt−h|Ft−1) = Yt−h, we deduce from (13) that Cov(αi◦Yt−1, Yt−h) = αi Cov(Yt−1, Yt−h).

Similarly, Cov(βi ◦ Yt−S , Yt−h) = βi Cov(Yt−S , Yt−h) and the statement fol-

lows.

Proof of Proposition 2.

P (Yt = yt, . . . , YS+1 = yS+1|YS = yS , . . . , Y1 = y1) =

P (Yt = yt, . . . , Y1 = y1)

P (Yt−1 = yt−1, . . . , Y1 = y1)
· P (Yt−1 = yt−1, . . . , Y1 = y1)

P (YS = yS , . . . , Y1 = y1)
=

P (Yt = yt|Yt−1 = yt−1, . . . , Y1 = y1)×

P (Yt−1 = yt−1, . . . , YS+1 = yS+1|YS = yS , . . . , Y1 = y1) =

pν(yt|yt−1, yt−S)P (Yt−1 = yt−1, . . . , YS+1 = yS+1|YS = yS , . . . , Y1 = y1),

where t = kS + ν, t > S and y1, . . . , yt ∈ Z+. Thus, by induction, if T = nS

where n ∈ N, the conditional probability can be calculated by (7).
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Proof of Theorem 1. The proof is based on the conditions in [35, Theorem

3.2.26]. Let {Yt}t∈Z be a PINAR(1, 1S) process and {Y k}k∈Z defined by (4)

where A,B satisfy Assumption 1. By Lemma 1, for each ν, {YkS+ν}k∈Z is

a strictly stationary ergodic process. Let Y ∗= {Y1, . . . , YT } be a sample of

{Yt}k∈Z. Functions mk,ν(ϑν) and fk,ν(ϑν) defined by (9) and (10), respectively,

are almost surely three times continuously differentiable in the open set Θ which

contains ϑ0. Then, function φk,ν(ϑν) defined by (11) is also almost surely three

times continuously differentiable in Θ. Theorem 1 is proved if φk,ν(ϑν) satisfies

the following conditions:

C1. For 1 ≤ i, j ≤ 3,

E

{∣∣∣∣ ∂

∂(ϑν)i
φk,ν(ϑ0ν)

∣∣∣∣} <∞ and E

{∣∣∣∣ ∂2

∂(ϑν)i∂(ϑν)j
φk,ν(ϑ0ν)

∣∣∣∣} <∞, (14)

where (ϑν)i is the ith element of the vector (ϑν), that is, (ϑν)1 = αν , (ϑν)2 = βν

and (ϑν)3 = λν .

C2. The functions

fk,ν(ϑ0ν)−1/2
∂

∂(ϑν)i
mk,ν(ϑ0ν),

for i = 1, 2, 3, are linearly independent.

C3. For enery ϑ ∈ Θ, there exists a function Hijl
t (Y1, . . . , YT such that∣∣∣∣ ∂3

∂(ϑν)i∂(ϑν)j∂(ϑν)l
φk,ν(ϑν)

∣∣∣∣ ≤ Hijl
t , (15)

with E(Hijl
t ) <∞ for i, j, l = 1, 2, 3.

C4.

V = E

{
∂

∂(ϑν)
φk,ν(ϑ0ν)

∂

∂(ϑν)>
φk,ν(ϑ0ν)

}
<∞. (16)

In the following, we check C1,. . . , C4 for the PINAR(1, 1S) model.

Let gk,ν(ϑν) = Yt −mk,ν(ϑν). We have

∂

∂(ϑν)i
φk,ν(ϑν) =

1

fk,ν(ϑν)

∂

∂(ϑν)i
fk,ν(ϑν) +

2gk,ν(ϑν)

fk,ν(ϑν)

∂

∂(ϑν)i
gk,ν(ϑν)−

g2k,ν(ϑν)

f2k,ν(ϑν)

∂

∂(ϑν)i
fk,ν(ϑν), (17)
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and

∂2

∂(ϑν)i(ϑν)j
φk,ν(ϑν) =

−1

f2k,ν(ϑν)

∂

∂(ϑν)i
fk,ν(ϑν)

∂

∂(ϑν)j
fk,ν(ϑν) +

1

fk,ν(ϑν)

∂2

∂(ϑν)i∂(ϑν)j
fk,ν(ϑν) + 2

∂

∂(ϑν)i

(
gk,ν(ϑν)

fk,ν(ϑν)

)
∂

∂(ϑν)j
gk,ν(ϑν) +

2gk,ν(ϑν)

fk,ν(ϑν)

∂2

∂(ϑν)i∂(ϑν)j
gk,ν(ϑν)− ∂

∂(ϑν)i

(
g2k,ν(ϑν)

f2k,ν(ϑν)

)
∂

∂(ϑν)j
fk,ν(ϑν)−

g2k,ν(ϑν)

f2k,ν(ϑν)

∂2

∂(ϑν)i∂(ϑν)j
fk,ν(ϑν). (18)

It follows form (10) that

1

fk,ν(ϑν)

∂

∂(ϑν)i
fk,ν(ϑν) =


(1−2αν)Yt−1

fk,ν(ϑν)
if i = 1,

(1−2βν)Yt−S
fk,ν(ϑν)

if i = 2,

1
fk,ν(ϑν)

if i = 3.

(19)

Since fk,ν(ϑν) ≥ λν > 0, 1/fk,ν(ϑν) ≤ 1/λν , and the absolute value of the first

term in the right hand side of (17) is bounded by the integrable Z+-valued r.v.’s,

cYt−1, cYt−S or c, where c is a positive number, this first term satisfies C1. For

simplicity, we write in the following “bounded by cYt”. Similarly, one can prove

that the second and third terms in the right hand side of (17) are bounded by

cY 2
t , and all the terms in the right hand side of (18) are bounded by cY 3

t . Since

E(Y 3
t ) <∞, this implies C1.

According to (9), ∂
∂ϑν

mk,ν(ϑ0ν) = (Yt−1, Yt−S , 1). To prove C2, it is suffi-

cient to show that the r.v.’s Yt−1, Yt−S and 1 are linearly independent. Sup-

pose that a1, a2, a3 are real numbers such that a1Yt−1 + a2Yt−S + a3 = 0.

Then, Cov(a1Yt−1 + a2Yt−S + a3, Yt−h) = 0, ∀h ∈ Z, i.e, a1 Cov(Yt−1, Yt−h) +

a2 Cov(Yt−S , Yt−h) = 0. If t − 1 ≡ (i mod S), i = 1, . . . , S, then we have

a1γi(h − 1) + a2γi+1(h − S) = 0. When i = S, i + 1 = S + 1 ≡ (1 mod S).

Then we have, ∀h ∈ Z,a1γi(h− 1) + a2γi+1(h− S) = 0, for i = 1, . . . , S − 1,

a1γS(h− 1) + a2γ1(h− S) = 0.
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The unique solution to the above system is a1 = a2 = 0, and then we deduce

that a1 = a2 = a3 = 0.

The proof of C3 follows from easy but fastidious calculations involving the

third derivatives of φk,ν(ϑν).

Since each derivative ∂
∂(ϑν)i

φk,ν(ϑ0ν) is bounded by cY 2
t , each term in

∂

∂(ϑν)
φk,ν(ϑ0ν)

∂

∂(ϑν)>
φk,ν(ϑ0ν)

is bounded by cY 4
t . Since E(ε4t ) <∞, we have E(Y 4

t ) <∞ and then V is finite.
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