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Internal Model Control with Distributed-Delay-Compensator to
Attenuate Multi-Harmonic Periodic Disturbance of Time-Delay System*

Can Kutlu Yuksel, Jaroslav Busek, Tomas Vyhlidal#, Silviu-Iulian Niculescu, Martin Hromcik

Abstract— A distributed-delay based compensator for the
Internal Model Control scheme is introduced as an alternative
to the repetitive control structure to attenuate periodic dis-
turbance with multiple harmonics. Besides the periodic signal
attenuation, the scheme is derived to compensate an input
time-delay of the controlled system. Next, the performance
requirements on the spectral, frequency, and time domain char-
acteristics are used for an optimization-based design. The task is
to minimize the H∞ norm of the weighted sensitivity, while the
spectral and structural properties comply with the constraints.
The proposed design is tested on a model of a hot rolling
process, which motivates the research. Numerical analysis and
simulation-based verification complete the presentation.

I. INTRODUCTION

Many industrial processes are in some way required to
work under periodic actions either due to carrying out
a repetitive task or due to a periodic disturbance caused
by a rotating or vibrating mass present in the working
environment. In both cases, such processes require con-
trollers to achieve and sustain their goals. Arguably the
most popular technique to design controllers that work with
periodic signals is the repetitive control strategy. This control
strategy has been widely studied and proved its effectiveness
in various fields. In this paper, we propose an alternative
controller design method, motivated by the repetitive control
paradigms, that allows a wide range of systems to work under
periodic actions. The design is based on the Internal Model
Control (IMC) and makes use of a distributed delay for the
compensation of periodic signals. Additionally, the control
system is designed to simultaneously address the substantial
input delay present in the plants. Such a design consideration
stems from the goal to remove the periodic surface defects
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observed in hot rolling mills which suffer from input time-
delays.

A. Repetitive Control - motivation and solutions

Repetitive control was initially introduced by Inoue [1]
and it is based on the Internal Model Principle stated by
Francis and Wonham [2]. For periodic exogenous signals, the
controller design paradigm discussed in [2] is generalized by
employing the periodic signal generator

DPSG(s) =
1

1− e−sTd
(1)

which generally represents all the periodic signals with a
certain period Td. In this setting, the controller is referred to
as the repetitive controller. However, with the time-delays
occurring in the closed-loop, such a feature for applica-
tions under periodic actions made the design of stabilizing
controllers rather difficult. The initial design introduced by
Inoue was proven to be applicable to only SISO proper
systems with BIBO stability and its application to strictly
proper systems was made possible by the modified repetitive
controller introduced in [3]. Such a controller consists of a
low-pass filter associated with the delay term in the periodic
signal generator as shown in Fig. 1, and its sensitivity transfer

Fig. 1. Repetitive Control Scheme

function is expressed by

S(s) =
1− F (s)e−sTd

1− F (s)e−sTd + C(s)G(s)
. (2)

In the ideal case when F (s) = 1, the transfer function
has infinitely many zeros satisfying 1− e−sTd = 0. In such
a case, the zeros lie on the imaginary axis at the integer
multiples of the frequency of the periodic signal generator
i.e sk = j 2πk

Td
, k ∈ Z. Since a periodic signal with a period

Td can be expressed by its Fourier series as

d(t) =
c0
2

+

M∑
l=1

cl cos

(
2πl

Td
t− ϕl

)
, (3)

with cl, ϕl, l = 1, . . . ,M determining the amplitudes and
phase shifts of the M harmonic components and M being,



in general, infinite, it follows that the poles of the periodic
signal are cancelled by the zeros of the sensitivity transfer
function. This fact leads the error to converge to zero
provided that the closed-loop is stable. However, in this
setting, the dynamics of the closed-loop system are described
by neutral functional differential equations (see, e.g. [4], [5]
and the references therein), having both point and essential
spectrum in the linear case that makes the analysis more
complicated and further involved. The introduction of the
low-pass filter F (s) addresses this issue. Even though the
filter causes the harmonic zeros to shift away from the
imaginary axis at high-frequencies and, therefore, limits the
precision of the signal generation, this downgrade is justified
by the fact that the overall closed-loop is represented now by
a set of retarded functional differential equations possessing
only point spectrum in the linear case. In other words, this
last setting requires less strict conditions for stabilization.

Additionally, in terms of practical applications, this loss of
precision does not influence the applicability of the control
scheme since the level of precision can be tuned by the pass-
band of the filter.

After assessing the stability for the initial case, the de-
velopment of repetitive control continued at three main
directions: (i) enhancing reference tracking or disturbance
rejection performance of periodic and non-periodic signals,
(ii) improving the robustness of the whole control system
against frequency uncertainties, noises and identification
errors, and, (iii) extending the application of repetitive con-
trol to advanced systems like non-linear, time-delayed and
MIMO systems and systems with control constraints.

Despite the benefit it introduces for tracking and rejecting
periodic signals, the inclusion of the periodic signal generator
into closed-loop also negatively affects the tracking and
rejection of non-periodic signals. To address this issue, Inoue
in [6] introduced the high-order repetitive controller in which
the time-delay component e−Tds is replaced by the polyno-
mial W (s) =

∑m
i=1 wie

−msTd where wi denotes the weight
of the ith term. It was shown that the tracking performance
for aperiodic signals can be improved by tuning the weights.
A method for tuning the weights using H∞ norm was
proposed in [7] which resulted in a better performance than
what is proposed in [6]. The degree of freedom introduced
by the weights led to many advances for the robustness of
repetitive control as well.

The robustness of the repetitive control is mainly investi-
gated for two sources of uncertainties. One of them is the
uncertainty arisen from the inaccuracy between the plant and
the model. The second one is the uncertainty imposed by
the varying or unknown period of an exogenous signal. For
repetitive control systems suffering from model errors, their
performance and robustness were studied using structured
singular values in [8]. A graphical design technique that
ensured the stability of the control system despite plant
uncertainties was proposed in [9] and repetitive control
for linear systems with time-varying and norm-bounded
uncertainties was studied in [10] using Lyapunov functionals
for time-delay systems. For systems with input-delay, a

robust repetitive controller was designed in [11] based on
µ synthesis.

On the other hand, robustness against variations and un-
certainties in the period of the exogenous signal holds great
importance for the reliability of the repetitive control. The
effectiveness of the repetitive control relies on matching the
zeros on the imaginary axis introduced by the periodic signal
generator with the poles of the exogenous periodic signal.
Therefore, the controller should be able to tolerate some
uncertainty in the period of the signal to prevent failures. In
[12], [13] an adaptive repetitive control based on the discrete-
time setting was proposed for tracking periodic signals with
an unknown period. A genetic algorithm-based repetitive
control design was studied in [14]. Steinbuch initially studied
the high-order repetitive controller to improve the robustness
of the repetitive control to signals with uncertain period
in [15] and later on in [16] described a unifying method
that covered the results from [7] and [16]. An LMI based
design method that takes into account both the robustness
for period uncertainty and non-periodic signal performance
was proposed in [17].

B. Distributed Delays in Control and Compensation

As it will be shown, involving an IMC scheme in the
periodic signal compensation provides a straightforward con-
troller design and enables the input delay compensation.
Nevertheless, the main contribution of this paper lies in
involving a distributed delay instead of the standard lumped
delay in the harmonics compensation. This research direction
builds up on the results of the broader authors team gained
from the application of distributed delay in input shaping
[18], [19], [20], [21] and vibration control, [22], [23], [24].
The main benefit of involving the distributed delay stems
from the retarded spectral features at the high-frequency
range. Compared to the neutral dynamics brought by the
lumped delay, no further filtering is needed to save the
stability at high frequencies.

The paper is organised as follows. In Section II, the IMC
scheme with the main components is proposed and adjusted
towards compensating both the input time delay and the
periodic disturbance. The compensator design based on the
distributed delay, which is the main proposition of the paper,
is presented in Section III. Section IV presents a practically
motivated case study example. Brief conclusions and further
directions are highlighted in Section V.

II. INTERNAL MODEL CONTROL AND COMPENSATION
SCHEME

In order to fulfill the two compensation tasks (periodic
disturbance and input time delay), an Internal Model Control
(IMC) scheme is considered as shown in Fig. 2. The IMC
arrangement was first introduced and carefully studied by
Garcia and Morari [25]. Its design and performance under
periodic disturbances were studied in [26] and its applica-
tion to first order systems with time-delay was studied by
Vyhlidal and Zitek in [27], see also [28].



The controlled plant in the IMC scheme in Fig. 2 is
considered to be in the form

G(s) =
y(s)

u(s)
= Gi(s)e

−sτ (4)

where u, y are the system input and output, respectively;
Gi(s) is assumed to be a proper and invertible transfer
function, i.e. without any positive zeros, and τ is the input
delay to be compensated. The transfer function Gm(s)e−sτm

denotes the model of the plant with input delay τm. In
the nominal form, it is assumed that Gm(s) = Gi(s) and
τm = τ .

Fig. 2. Proposed internal model control scheme for periodic disturbance
compensation

As it will be shown, the delay τ compensation is im-
posed by the IMC scheme. The compensation of the multi-
harmonic periodic disturbance d(s) is performed by the
compensator D, which is of a distributed-delay form with an
overall length TD. The compensator output ū is determined
by

ū(t) =

∫ TD

0

D(η)e(t− η) dη (5)

where e is the compensator input. Analogous to the input
shaper application [20], the delay is assumed to be piece-wise
equally distributed and expressed by the transfer function

D(s) =
1

s

N∑
k=0

ake
−skϑ (6)

where ϑ = TD

N and N + 1 is the number of coefficients ak
to be tuned.

The last component of the IMC scheme in Fig. 2 is the
controller given by

C(s) =
1

Gm(s)
F (s), (7)

where F (s) is a low-pass filter included to guarantee that
D(s)C(s) is a proper (biproper, at least) transfer function
satisfying

lim
s→0

F (s) = 1, (8)

i.e. having unity static gain.
The sensitivity function of the scheme in Fig. 2 is given

by

S(s) =
y(s)

d(s)
=

1−D(s)C(s)Gm(s)e−sτm

1 +D(s)C(s) (Gi(s)e−sτ −Gm(s)e−sτm)
. (9)

With the assumption Gi(s) = Gm(s) and the controller in
the form (7), it reduces to

S(s) = 1−D(s)F (s)e−sτm , (10)

which will be further considered for the design. Note that
for this nominal case, the complementary sensitivity function
is given by

T (s) = D(s)F (s)e−sτm . (11)

Notice that in the nominal form (10), the input delay τ has
been fully compensated and the dynamics is finite dimen-
sional. However, this is a strong idealization and therefore,
in practice, the closed loop dynamics still needs to be
considered as infinite dimensional with the characteristic
equation given by

1 + C(s)D(s)
(
Gi(s)e

−sτ −Gm(s)e−sτm
)

= 0 (12)

which can be further simplified to

Gm(s)
(
1−D(s)F (s)e−sτm

)
+D(s)F (s)Gi(s)e

−sτ = 0.
(13)

Taking into account that all the involved transfer functions
are proper, thanks to the distributed delay features recognised
in [20], the closed loop dynamics is of retarded time delay
form with all the positive spectrum distribution features [4],
[20].

III. DISTRIBUTED-DELAY BASED COMPENSATOR DESIGN

The distributed delay D(s) is to be shaped with the objec-
tive to compensate the dominant (low-frequency) harmonics
of the periodic disturbance d(t). Taking into account the
Fourier series expansion (3), the compensation of Md dom-
inant harmonics with frequencies Ωl = 2πl

Td
, l = 1, 2, ..,Md

leads to the equation set

S(jΩl) = 0, l = 1, 2, ..Md. (14)

Reflecting this to the nominal sensitivity function (10) sub-
stituted with the compensator in (6), we get

N∑
k=0

ake
−jΩlkϑ =

jΩl
F (jΩl)

ejΩlτm , l = 1, 2, ..Md. (15)

When each equation is split to its real and imaginary part,
we obtain

N∑
k=0

ak cos(Ωlkϑ) = Rl,

N∑
k=0

ak sin(Ωlkϑ) = Il,

(16)

where

Rl = <
(
jΩle

jΩlτm

F (jΩl)

)
, Il = −=

(
jΩle

jΩlτm

F (jΩl)

)
(17)

for l = 1, 2, . . . ,Md.
Additional conditions to assess the parameters ai result

from the performance and structural requirements on the
compensator. Taking into account the requirements on the



reference tracking (lims→0 T (s) = 1) and the disturbance
rejection (lims→0 S(s) = 0) and considering (8), the com-
pensator needs to have a static unity gain, i.e.

lim
s→0

D(s) = 1. (18)

For the structure in (6), this leads to the condition
N∑
k=0

ak = 0 (19)

implying the finite response feature of D(s) and additionally
to the condition

N∑
k=0

akkϑ = −1. (20)

Thus, taking into account the equation set (16), (19) and
(20) the design problem of D(s) can be formulated as a
solution of

Ax = B, (21)

where x ∈ RN+1, A ∈ R2Md+2×N+1, B ∈ R2Md+2, given
as x = [a0, a1, ..., aN ]T,

A =



1 cos(Ω1ϑ) · · · cos(Ω1Nϑ)
...

... · · ·
...

1 cos(ΩMd
ϑ) · · · cos(ΩMd

Nϑ)
0 sin(Ω1ϑ) · · · sin(Ω1Nϑ)
...

... · · ·
...

0 sin(ΩMd
ϑ) · · · sin(ΩMd

Nϑ)
1 1 · · · 1
0 ϑ · · · Nϑ


, B =



R1

...
RMd

I1
...

IMd

0
−1


.

Assuming N + 1 > Md, equation (21) has infinitely many
solutions and can be solved via the pseudoinverse

x =
(
ATA

)−1
ATB, (22)

yielding the least squares solution of (21). It should be
stressed that the solution of (21) requires A being of full
row rank. This is fulfilled for any parameters satisfying

2
Md

Td
<

N

TD
(23)

Under this condition the arguments of sine and cosine func-
tions in the matrix A given by Ωlkϑ = 2πl

Td

kTD

N , k = 1..N
are sufficiently small to avoid any dependency between the
rows of A.

In what follows, considering that N + 1 >> Md, we
introduce additional positive features for the design of the
compensator.

A. Optimal design

In order to enhance the closed loop robustness, we employ
the standard H∞-norm minimization of the weighted sensi-
tivity function [29]. Considering the above derived conditions
(21), the design is formulated as a constrained optimization
problem

min
x

‖(1−D(jω)F (jω)e−jωτm)W (jω)‖∞
s.t. Ax = B

Anx ≤ Bn
(24)

where

W (s) =
1
bu
s+ ωb

s+ blωb
(25)

is the weight function determining the desired bandwidth ωb,
lower bl and upper bu bounds of the sensitivity function.

The involved inequality constraint in (24) is used to
impose the limits on the Jerk, i.e. maximum Jmax and
minimum Jmin of the impulse response of D(s), which
results to

An =

[
L
−L

]
, Bn =

[
JmaxeN
−JmineN

]
,

where L ∈ RN+1×N+1 is a lower triangular matrix with
Lp,q = 1, for q ≤ p and Lp,q = 0 otherwise, eN ∈ RN+1 is
the unity vector eN = [1, 1, . . . , 1]T.

When solving the problem (24), one needs to take into
account that it is performed over a frequency response of a
time delay system for which even the computation of H∞
norm is not straightforward [30] and built-in computational
tools are not available, e.g. in Matlab. In general, the norm
is a non-convex and non-smooth function with respect to the
parameters [31]. Therefore, the problem (24) needs to be
handled as a constrained nonlinear optimization problem. In
the application example below, the Matlab fmincon is used
with the initial condition resulting from (22). Alternatively,
HANSO [32], (or recently designed GRANSO [33]), can be
applied analogously to [31].

IV. CASE STUDY APPLICATION TO HOT ROLLING
PROCESS

The above proposed control design is demonstrated on a
hot rolling application, which motivates the research. The
overall scheme of the hot rolling process is in Fig. 3.
Structurally, it consists of working rolls that are in contact
with the rolled plate and the back-up rolls being actuated
by the hydraulic system. Since the rolled plate thickness is
measured at a distance L from the roll working point, the
process inherits a time delay τ = L

v , where v is the plate
velocity, considered constant here. One of many disturbances
acting on the thickness is the periodic disturbance caused
by the eccentricity of the rolls. To remove this effect, the
hydraulic system responsible for moving the top roller in a
vertical direction must be controlled accordingly.

In Fig. 4, an instance of measured process data is shown.
As also shown, it can be well approximated by the first-order
model with an input delay

G(s) = Gm(s)e−τms =
h(s)

H(s)
=

Km

Tms+ 1
e−τms (26)

with Km = 0.5, Tm = 0.8 s, τm = 3.8 s describing the
dynamics between the rolling gap u(t) = H(t) and the
measured plate thickness y(t) = h(t). The frequency of the
observed disturbance from the measured data is evaluated
by FFT as Ω1 = 5.3 s−1. Next to this lowest harmonic
determining the period of the oscillations Td = 1.1855 s,
there exists one more distinct harmonic observed from the
measured data at Ω2 = 10.6 s−1. In order to demonstrate the



Fig. 3. Scheme of the rolling mill with working and back-up rolls.
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Fig. 4. Measured rolling process data and their fitting by the model (26)

potential of the proposed method, instead of targeting the
relatively simple period formation from the real process, we
target a more complex artificially generated period profile
depicted in Fig. 5. In the bottom part of Fig. 5, the am-
plitudes of the harmonics are shown considering the signal
decomposition by (3). In particular, eight amplitudes can
be detected as dominant, which will be considered in the
assigned Ωl = l 5.3, l = 1..8, i.e. Md = 8.

Taking into account the length of the input delay and the
oscillation period, the action length of the compensator is
considered as TD = 2Td = 2.3710 s. To assign the eight
roots to D(s) by (16) and satisfy the additional conditions
(19) and (20), at least 18 parameters ak are required. In
order to have a sufficient degree of freedom to solve (24),
we select N = 60. The parameters of the weight function
(25) are selected as ωb = 0.12 s−1, bu = 2, bl = 0.01 in
order to achieve standard stability margin and low-frequency
pass band compared to Ω1. The definition of the optimization
problem is finalized by selecting Jmin = −3 and Jmax = 8.
The asymmetric Jerk limits are used with the objective to
limit the possible step response undershoot as much as
possible. Last but not least, the filter F (s) needs to be
selected for the controller

C(s) =
Tms+ 1

K
F (s). (27)

In order to demonstrate the structural benefits of D(s) in the
distributed delay form (6), the minimal controller order is
selected with F (s) = 1. Interestingly, this option is possible
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Fig. 5. Period of the disturbance d and magnitudes of the harmonics
according to (3).

when restructuring D(s)C(s) to the form

D(s)C(s) =

N∑
k=0

ake
−skϑTms+ 1

Kms
, (28)

i.e. it is composed of a weighted sum of delayed inputs and
a biproper transfer function. Thus, the non-delayed dynamics
Gm is completely compensated and the nominal dynamics
is determined by the distributed delay only.
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Fig. 6. Amplitude frequency responses of the sensitivity (10), comple-
mentary sensitivity (11) and the predefined weight 1

W (s)
, W (s) given by

(25)

The results of the optimization task, solved by fmincon are
shown in Fig. 6. As can be seen, the requirements imposed on
the nominal sensitivity function by (25) have been satisfied.
Note that the H∞ norm was determined numerically by
sweeping the frequency over the frequency band visualised
in Fig. 6. Despite of this, the overall evaluation time by
fmincon was close to 20s. The result of the parameter
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Fig. 7. Impulse Response of the distributed-delay-compensator D(s) given
by (6) with the imposed limits Jmin and Jmax (dashed).

optimization is presented visually in Fig. 7, demonstrating
the predefined finite length and satisfied Jerk limits of the
D(s) impulse response. Simulation based verification of
considered periodic disturbance compensation is shown in
Fig. 8. It nicely demonstrates that after the transition time,
not much longer than τm+TD, the dominant Md harmonics
are fully compensated. The residual vibrations, lying below
the expected noise level, corresponds to the higher frequency
harmonics which have not been targeted.
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Fig. 8. Simulation based demonstration of the periodic disturbance
compensation with the d(s) period shape in Fig. (5), considering the
nominal system Gi(s) = Gm(s).

Next, the fulfillment of the equality constraints (16) is
demonstrated in Fig. 9, where the spectrum of (10) zeros
is shown, evaluated by QPmR [34]. As required, eight zeros
have been placed at the predefined positions on the imaginary
axis. Note that the zero in the origin is virtual as it is
cancelled out by the D(s) pole at the origin. Notice also
that the retarded chain of infinitely many unassigned zeros
is located on the left half complex plane. This property is
crucial for the spectrum distribution of the infinitely many
poles of the closed loop system which emerge under the

model perturbation. Considering the perturbed plant model

Gi(s) =
0.9

0.1s+ 1
Gm(s), (29)

the system poles given as solutions of the equation (13) tend
to match the spectrum of S(s) zeros at the higher frequency
range, as also shown in Fig. 9. Even though the perturbation
affected the disturbance compensation, see Fig. 10, all the
poles are located to the left and the controlled variable y(t)
asymptotically approaches to the reference r = 0.
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Fig. 9. Spectrum of zeros of the nominal sensitivity function (10) (•) and
spectrum of poles of the perturbed closed loop system (+). (Top) Large
scale distribution of spectra. (Bottom) Detailed distribution of spectra with
the zeros placed at desired positions (red ◦).

V. CONCLUSION

A complex design approach has been proposed to com-
pensate the input time delay and the multi-harmonic periodic
disturbance. Compared to the standard repetitive control, the
proposed approach is straightforward in the sense that both
the controller and the compensator design are performed
simultaneously. As demonstrated in the case-study exam-
ple, a large number of zeros corresponding to the active
harmonics can be fully covered robustly even for a system
with substantial input time delay and a certain level of plant
parameter uncertainty. Most of the positive features arise
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Fig. 10. Simulation based demonstration of the periodic disturbance
compensation with the d(s) amplitude shape in Fig. (5), considering the
perturbed system (29)

from the beneficial properties of the distributed delay, its
retarded spectrum of zeros in particular. In future research,
the attention will be paid to robustness analysis, spectrum
distribution of the perturbed system at the high frequency
range and systematic H∞ optimization of the arising time
delay system.
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