A new on-line exponential parameter estimator without persistent excitation - Archive ouverte HAL Access content directly
Journal Articles Systems and Control Letters Year : 2022

A new on-line exponential parameter estimator without persistent excitation

, , (1, 2) , ,
1
2
M. Korotina
  • Function : Author
  • PersonId : 1139620
J.G. G Romero
  • Function : Author
A. Bobtsov
R. Ortega
  • Function : Author

Abstract

In this paper we propose a new algorithm that estimates on-line the parameters of a classical vector linear regression equation Y = Ωθ, where Y ∈ R n , Ω ∈ R n×q are bounded, measurable signals and θ ∈ R q is a constant vector of unknown parameters, even when the regressor Ω is not persistently exciting. Moreover, the convergence of the new parameter estimator is global and exponential and is given for both, continuous-time and discrete-time implementations. As an illustration example we consider the problem of parameter estimation of a linear timeinvariant system, when the input signal is not sufficiently exciting, which is known to be a necessary and sufficient condition for the solution of the problem with standard gradient or least-squares adaptation algorithms.
Fichier principal
Vignette du fichier
mainSCL_accepted.pdf (1.32 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03463648 , version 1 (02-12-2021)

Identifiers

Cite

M. Korotina, J.G. G Romero, Stanislav Aranovskiy, A. Bobtsov, R. Ortega. A new on-line exponential parameter estimator without persistent excitation. Systems and Control Letters, 2022, 159, pp.105079. ⟨10.1016/j.sysconle.2021.105079⟩. ⟨hal-03463648⟩
77 View
142 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More