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Abstract

Modulated photoluminescence (MPL) is an optoelectronic characterization technique of semiconductor ma-
terials. Going to high frequencies enables one to characterize fast phenomena, and so materials with a short
lifetime such as chalcogenides or III-V absorbers. Some typical signatures have already been experimentally
observed. However, physical mechanisms and quantitative analyses are not well understood yet. Here, using
both an analytical approach and a full numerical modeling, we study how the energy position of a defect level,
its electron and hole capture cross sections, its density, influence the frequency dependence of the MPL phase.
We show that quantitative information can be extracted. We also study the effect of additional surface recom-
bination, and of non homogeneities created by carrier generation profiles or asymmetric top surface and bottom
surface recombination velocities, where diffusion of the carriers plays a role and can be limiting at high frequency.
Finally we apply our model to an experimental result to extract defect parameters of the sample. Our analysis
highlights the usefulness of MPL and the importance of having a proper modeling of the experiment.
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I Introduction

Photoluminescence (PL) is a proven technique to study semiconductors. As it is contactless and purely optical,
it is very useful for the development of applications like LEDs and photovoltaics because experiments can be
performed at every stage of the production process (from the raw material to the device) without the need of
electrical connections. Photoluminescence is based on radiative recombinations, and one can analyze its spectrum
and its intensity. It can be done under steady-state conditions [1][2] or with time-varying excitation. The most
famous time-varying mode is the response to a light pulse, leading to transient or time-resolved photoluminescence
(TRPL).[3][4]

In modulated photoluminescence (MPL), the sample is sinusoidally illuminated, and we focus on the resulting
periodic response of the photoluminescence. The technique has been used to investigate silicon under a small-signal
approach in order to measure the differential minority carrier lifetime, with frequencies up to some kHz [5][6][7],
but also other materials in the infrared range [8]. It was also recently used on quantum well InGaN LEDs by
Reklaitis et al, with frequencies up to 100 MHz [9][10]. A newly developed method in MPL techniques is based on
the simultaneous use of two modulating frequencies, to make heterodyne detection and observe non-linearities in
high injection rate. In [11] and [12], the authors develop some analytical model to be able to interpret the results
by computing the different parameters of the recombination paths. In our experiment and analysis, we use only
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Figure 1: Sketch of the considered structure (a) and principle of MPL (b)

one excitation frequency and a large modulation depth (more than 50%) and frequencies up to 100 MHz. This
enables the extension of the technique to semiconductors with short lifetimes, used in thin-film photovoltaic cells
for instance, such as CIGS or III-V materials. MPL is, therefore, a new tool of advanced characterization, useful
to check the quality of a material or to have a better knowledge of the material, and then to enhance the process
of fabrication.

There have already been some works on MPL at high frequency (HFMPL) by Berenguier et al., who have
published two articles. In the first one[13], one can see details on the experimental setup, experimental data
obtained on a CIGS absorber, and simulation-based analysis. In particular, it shows that the frequency dependence
of the MPL phase can exhibit different behaviours : either a monotonous decrease or a local minimum described
as (and denoted in the following) a V-shape. We can note that Mickevicius et al. have also observe V-shapes on
GaN at low-temperature.[14] In the second one[15], the authors have used simulations to show the impact of the
illumination power on the phase diagram, and so the usefulness of doing the characterization at several powers in
order to detect specific signatures of defects. Particularly, it offers promising results about detecting shallow traps
compared to more well-established techniques such as TRPL.

In this work, we develop an analytical model and use complementary 2D finite-elements simulations to explore
to which extent HFMPL can offer a quantitative assessment of defect parameters and of the impact of surface
recombination velocity (SRV).

We consider a simple structure with a semiconductor thin layer illuminated from the top surface, as shown in
figure 1a. When the periodic excitation is switched on, the time dependence of the photoluminescence signal first
exhibits a transient phase corresponding to the onset regime until a periodic quasi-steady-state regime is reached.
The periodic PL may not be a perfect sinusoid due to nonlinearities, even in low-illumination conditions. However,
we can extract the amplitude and the phase shift between the excitation and the PL signal at the working frequency
(called fundamental), as illustrated in figure 1b (t0 being the settling time so that only the steady-state part is
shown). The measurements can be repeated at different frequencies, which allows one to plot the phase shift as a
function of frequency. This is also called a Bode phase plot (in the following, we will use more simply phase plot),
and it is a standard tool in control theory. [16] We can also study the frequency dependence of the amplitude of the
modulated part of the photoluminescence, but it contains the same information as the phase plot, and is visually
less clear.

In Section II, we lay the theoretical foundations of the analytical model and establish the equations to calculate
the phase plot, with a focus on low-illumination conditions. We study the effect of a defect level in the bandgap
and show that the phase plot can be very different depending on the energy position of the level. More specifically,
we demonstrate the existence of a V-shape in the phase plot when the defect acts as a minority-carrier trap, with
its energy close to the minority-carrier band. In Section III, we propose a complementary full numerical simulation,
that allows us to validate the analytical model of Section II and to extend the calculations beyond the simplifying
assumptions of the analytical model. In particular, in Section III.3 we study the impact of the surface recombination
velocity in different cases. Finally, in part IV, we will illustrate the application of our analysis on an experimental
result.
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II Analytical approach

II.1 Phase-shift of the PL

In order not to burden the writing of the equations, we will consider a p-type semiconductor characterized by a
concentration of acceptor type dopants, Na, and with only one level of defects (that we will consider of acceptor
type) in the gap at the energy Et and with a concentration Nt. The following relations can be extended to the
case of an n-type semiconductor (by introducing a concentration of dopants of donor type, Nd) and to the case of a
donor-type defect level or to several levels of defects. We denote n and p the concentrations of electrons (minority
carriers) and holes (majority carriers), and nt the concentration of defects occupied by an electron.

In order to make the analytical calculation possible, we assume that there is no space dependence of the physical
quantities (thus no gradient) and, in particular, the generation rate and carrier concentrations are constant. While
this assumption may appear as a crude one, we can note that rather homogeneous carrier concentrations in an
illuminated semiconductor can be obtained in AC condition if the homogenization through diffusion is fast compared
to the characteristic time scale of the AC signal, i.e. the period of the signal. In addition, we will show in the
next section, from full numerical modeling, where we can consider realistic carrier generation profiles and surface
recombination velocities, that the main results on the phase plot obtained in this section still remain valid.

The charge neutrality can be written :

p = Na + n+ nt, (1)

and the continuity equations for holes and electrons :

dp

dt
= G− p

τc,h
+
Nt − nt
τr,h

− n

τrad
, (2)

dn

dt
= G− n

τc,e
+

nt
τr,e
− n

τrad
, (3)

where G is the photogeneration rate of electron-hole pairs, and the various time constants are defined as:

- for the recombination process characterized by a radiative recombination constant B,

τ−1rad = ωrad = B.p, (4)

- for the capture of electrons by the defect :

τ−1c,e = ωc,e = vthσn(Nt − nt), (5)

where σn is the electron capture cross-section and vth the thermal velocity (taken identical for electrons and
holes),

- for the release of electrons by the defect (de-trapping) :

τ−1r,e = ωr,e = vthσnni exp(
Et − Ei
kBT

), (6)

ni being the intrinsic carrier concentration, and Ei the intrinsic Fermi level,

- for the capture of holes by the defect :
τ−1c,h = ωc,h = vthσpnt, (7)

where σp is the hole capture cross-section

- for the release of holes by the defect :

τ−1r,h = ωr,h = vthσpni exp(−Et − Ei
kBT

). (8)
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Note that we have assumed Auger recombination to be negligible since we will not consider very high excitation
levels.

The generation rate can be written :
G = G0 +G1 sin(ωt). (9)

with ω = 2πf the angular modulation frequency, f the frequency, G0 the mean value of the photogeneration
rate, and G1 the amplitude of the modulated part.

We remark that some of these time constants are dependent on nt or p, which are time-dependent, and so they
are not really constant, especially when nt has large variations (we will see that in low-frequency).

In quasi-steady-state, under sinusoidal optical excitation, equations (2) and (3) introduce non linearities that
result in harmonics of the fundamental pulsation ω. Consequently, we can use the Fourier series decomposition,
which is the decomposition of temporal functions on the orthogonal base (eikωt)−∞<k<+∞, k being an integer.
Since we work with real functions, the coordinate on e−ikωt is the conjugate of the one on eikωt, and we can write:

{
n =

∑+∞
k=−∞ nke

ikωt,

nt =
∑+∞
k=−∞ ntke

ikωt,
(10)

with :

{
nk = nke

iφn,k ,

ntk = ntke
iφt,k ,

(11)

nk and ntk being real quantities, and we have φn,0 = 0 and φt,0 = 0 so n0 = n0 and nt0 = nt0 which are the DC
concentrations of free electrons and trapped electrons, respectively.

From our experience on a wide range of materials and experimental conditions, the amplitude of the harmonics
(k ≥ 2) in the PL signal is usually less than a few percent of the amplitude of the fundamental (k = 1). So, we
make the hypothesis that the terms with k ≥ 2 are negligible.

The photoluminescence signal is proportional to the radiative recombination rate, so :

PL = K.B.n.p, (12)

K being a constant depending on the sample geometry and collecting area.
Using equation (1) to have only n and nt as variables (and not p), together with equation (10), we can express

the fundamental of PL as
PL1 = K.B.n1.(Na + 2.n0 + nt0) +K.B.nt1 .n0. (13)

Then, we can inject equations (1) and (10) in equations (2) and (3), do their projection on eiωt, and by
orthogonality, and after rearrangement, we obtain :(

A1 A2

A3 A4

)(
n1
nt1

)
= G1

(
1

1

)
, (14)

with


A1 = iω + vthσn(Nt − nt0) +B(Na + 2n0 + nt0),

−A2 = ωr,e + (vthσn −B)n0,

A3 = iω + vthσpnt0 +B(Na + 2n0 + nt0),

A4 = iω + vthσp(Na + n0 + 2nt0) +Bn0 + ωr,h.

(15)

By inverting the matrix, we obtain :
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n1 =

A4 −A2

A1A4 −A2A3
.G1,

nt1 =
A1 −A3

A1A4 −A2A3
.G1.

(16)

According to the definition of the matrix elements A1−4, it is necessary to know all DC quantities in order to
evaluate the phase of n1 and nt1 , and thus the phase of the PL. These are obtained from the DC components of
(2) and (3) :


0 = G0 − (Na + n0 + nt0)vthσpnt0 −Bn0 ∗ (Na + n0 + nt0)

+(Nt − nt0)ωr,h − 2vthσpn
2
t1 − 2Bn2

1 − 2(vthσp +B)nt1n1cos(φn,1 − φt,1),

0 = G0 + nt0ωr,e − n0vthσn(Nt − nt0)−Bn0 ∗ (Na + n0 + nt0)− 2Bn2
1

+2(vthσn −B)nt1n1cos(φn,1 − φt,1).

(17)

We see a coupling between order 0 and order 1, the DC terms are dependent on ω, which means that the system
is not linear.

Due to non-linearities and coupling, it is not possible to obtain simple analytical solutions for these DC concen-
trations. However, the system of equations (16) and (17) can be solved numerically.

We define ω0, S, ω1, ω2, ω2bis and ω3 by the following equations :

ω2
0 = (A1 − iω)(A4 − iω) + (−A2)(A3 − iω),

S = (A1 − iω)−A2 + (A4 − iω),

ω1ω3 = ω2
0 ,

ω1 + ω3 = S,

ω2 = (A4 − iω)−A2 = ωr,e + vthσnn0 + vthσp(Na + n0 + 2nt0) + ωr,h,

ω2bis = A1 −A3 = vthσn(Nt − (1 +
σp

σn
)nt0).

(18)

From that definition, ω1 and ω3 can be complex numbers, but we suppose that they are real and positive (which
is true as far as we know, and we show it in Appendix A for a typical case).

Using (18), we can write (16) the following way
n1 =

iω + ω2

(iω)2 + S.iω + ω2
0

G1 =
ω2G1

ω1ω3

(1 + iω/ω2)

(1 + iω/ω1)(1 + iω/ω3)
,

nt1 =
ω2bisG1

ω1ω3

1

(1 + iω/ω1)(1 + iω/ω3)
.

(19)

From that, the phase shift of n1 is

φn,1 = − arctan(ω/ω1) + arctan(ω/ω2)− arctan(ω/ω3), (20)

and, from (13), the phase shift of the PL is :

φPL = arg(PL1) = − arctan(ω/ω1) + arctan(ω/ω2ter)− arctan(ω/ω3), (21)

with ω2ter depending on ω2 and ω2bis :

ω2ter = ω2 +
n0

Na+ 2.n0 + nt0
ω2bis. (22)

In equations (18) to (22) the quantities ω1, ω2, ω2ter and ω3 are dependent on ω due to the coupling between
orders 0 and 1 in (17). If we can consider them constant, then the analytical model highlights three corner
frequencies, so that it can appears ”V-shapes”, with a local extremum, due to ω2. But it may appear more complex
cases if they present significant variations. Now, we will see some approximations to see the meaning of the corner
frequencies in low-illumination conditions.
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Figure 2: The three considered areas of energy position of the defect, delimited by E′F and E∗F defined in equation
(25)

II.2 Low-illumination approximation

We define the low-illumination conditions by
n0 � Na, (23)

and (at least) one of these two conditions

• nt0 � min(Nt, Na) ,

• nt1 � nt0 .

We show in Appendix B that in such conditions ω2ter ' ω2 and that we can neglect coupling terms between
orders 0 and 1 in (17). From that, we can deduce that n0 and nt0 are independent from ω, and that the same is
true for ω1, ω2, ω2ter and ω3. Then, from (17), nt0 is given by :

nt0
Nt

=
ωr,h + vthσnn0

ωr,h + vthσpp0 + ωr,e + vthσnn0
. (24)

In the following, we will divide the bandgap in three regions, as can be seen on figure 2, which are delimited by
the two levels E′F and E∗F , defined by{

E′F = EF + kBT ln(1 +Nt/Na),

E∗F = Ei + (Ei − EF )− kBT ln(σn/σp),
(25)

which can be considered as demarcation levels.
If Et > E∗F , the defect can be considered as a minority carrier trap (here an electron trap). If E′F < Et < E∗F ,

it can be regarded as a recombination center. Finally, if Et < E′F , it can be considered as a majority carrier trap
(here a hole trap). In the following, we will consider these three cases where further approximation can be done,
which leads in particular to the demonstration of a V-shape in the phase plot in the first case only.

Minority carrier (electron) trap

We have :

• Et > E′F , so that we consider that the condition nt0 � min(Nt, Na) is fulfilled,

• Et > E∗F , so that ntωr,e � pωc,h.

So, when the energy level is in this region, less holes are captured than electrons are released by the defect, so
the defect is doing trapping and detrapping. .

Then, we have :
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ω2 = ωr,e,

S = ωc,e + ωrad + ω2,

ω2
0 = ωc,evthσpNa + ωradω2.

(26)

We need to distinguish two cases. If radiative recombination is dominant (a sufficient condition is ωc,e � ωrad),
then {

S = ωrad + ω2,

ω2
0 = ωradω2.

(27)

So the expression of the phase shift is really simple :

φn,1 = − arctan(ω/ωrad). (28)

Now, if we have ωrad � S, let’s consider :

ω∗ = (vthσpNa + ωrad
ωr,e

ωc,e + ωrad
)

ωc,e + ωrad
ω2 + ωc,e + ωrad

. (29)

Then, it appears that {
ω2
0 = Sω∗,

ω∗ � S.
(30)

So that 
ω1 = ω∗,

ω2 = ωr,e,

ω3 = S.

(31)

It means that there are three distinct corner pulsations and that the phase diagram presents a V-shape.

Recombination center

We have :

• Et > E′F , so that we consider that the condition nt0 � min(Nt, Na) is fulfilled,

• Et < E∗F , so that ntωr,e � pωc,h.

We can derive : {
ω1 = ω2 = vthσpNa,

ω3 = ωc,e + ωrad.
(32)

So, the expression of the phase shift is :

φn,1 = − arctan(ω/(ωc,e + ωrad)). (33)

The corner pulsation we measure (ωc,e+ωrad) is the inverse of what we usually named the lifetime of the sample.
So, from the phase plot, we can directly know the lifetime.

One can see that the energy level and the hole capture cross-section have no influence on the phase plot, contrary
to the electron capture cross-section and the density of traps.
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Layer Thickness (µm) 2,3

Bandgap Eg (eV) 1,2

P-type doping Na (cm−3) 3.1016

Conduction and valence
band density of states
Nc/Nv (cm−3)

2.1018

Electron affinity (eV) 4,1

Relative permittivity εr 13,6

Electron mobility µn
(cm2.V−1.s−1)

50

Hole mobility µp
(cm2.V−1.s−1)

20

Radiative recombination
coefficient B (cm3/s)

8.10−11

kBT (eV) 0,0258

vth (cm/s) 1.107

Table 1: Parameters used for the model

Majority carrier (hole) trap

In that case we cannot neglect nt0 anymore in front of Na or Nt in the dark. So, we use the condition nt1 � nt0 .
Then, we can make the following approximation :{

ω1 = ω2 = ωr,h + vthσp(Na + 2nt0),

ω3 = ωc,e + ωrad = vthσn(Nt − nt0) +B(Na + nt0),
(34)

so that the expression of the phase is :

φn,1 = − arctan(ω/(ωc,e + ωrad)). (35)

We obtain the same equation as for a recombination center, but here we cannot neglect the impact of nt0 in the
expression of the corner frequency.

From this development, in low-illumination conditions, the phase plot can be described by an arc-tangent in the
cases of a recombination center and of a majority carrier trap. It implies that we cannot differentiate between them,
and that the same phase plot can be obtained for different set of parameters. It is a limit of this characterization
technique, at least as long as we stay in low-injection conditions. Another limit is that when there is only one corner
frequency, we cannot know so much about the defect parameters (density, energy position, capture cross-sections).

We have also shown that in low illumination conditions the corner frequencies are independent from the illumi-
nation power.

III Assessment from numerical modeling

Here we first test the validity of the analytical approach developed in section II with the help of a full numerical
modeling. We use the Atlas software, from Silvaco Inc., which computes currents and concentrations of carriers
numerically in each point of a user-defined mesh by solving Poisson’s and continuity equations using a finite difference
method. The parameters we use for the modeling of the material are specified in Table 1. These parameters are
taken here as an example that is representative of a CIGS thin film. The layer is not connected to an external
circuit, so it is in open-circuit conditions. We define a modulated photogeneration with a modulation depth of
100%, and the absorption is considered to follow Beer-Lambert’s law:
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G(y) = G0(1 + sin(2πft)). exp(−αy), (36)

where y is the coordinate perpendicular to the illuminated surface (y = 0, figure 1a), α the absorption coefficient,
G0 the generation rate at the surface, and f the frequency. We introduce one defect level in the bandgap, the energy
of which will be varied, along with the capture cross sections. Exchanges between this level and the conduction and
valence bands are considered through detailed balance, and an additional radiative recombination is also considered,
however we have neglected Auger recombination. For radiative recombination, the model is very simple, without
taking into account the spectrum of luminescence nor any optical aspect. All the details are given in the user’s
manual [17]. We also add surface recombination recombination modeled by a surface recombination velocity (SRV).
Except where it is precised, SRV will refer to the surface recombination velocity of electrons (the minority carriers)
the value of which being described by sn.

The photoluminescence is computed by the software as the integral of the radiative recombination rates over
the whole thickness of the sample. In a first part of the simulation, all equations are time-resolved, and then, when
the steady-state is reached, a fast Fourier transform (FFT) is performed (on the steady-state part) to extract the
phase shift of the fundamental of the PL compared to the photogeneration. We then plot the phase as a function
of frequency and we fit it with a sum of up to three arc-tangents as defined in equation (21), with a dedicated
spreadsheet software, and then, if needed, the characteristic frequencies - also called corner frequencies in the
following, are optimized with an elementary algorithm to yield the best fit.

In a first part, we will consider uniform generation (α = 0), with negligible surface recombination (sn=1cm/s) to
have a direct comparison with the analytical model described in Section II, then we will consider α = 1, 4.105cm−1,
which is the value measured at 532 nm in [13], in order to show that the analytical model can still be used in
non-uniform illumination. Finally, we will increase surface recombination and study its impact on the phase of the
photoluminescence.

The numeration of the curves refers to Table 2 where one can find the parameters of the simulations (energy
position of the defect, its electron and hole capture cross-sections, its density, and the surface recombination
velocity), and the computed corner frequencies are gathered in Table 3. These corner frequencies can be compared
with the analytical values given in Table 4, where one can also find the value of E∗F , ωc,e, ωr,e, ωr,h, and ωsn.

III.1 Homogeneous photogeneration without SRV

In order to assess the validity of the analytical calculations of Section II, here we take α = 0, with negligible surface
recombination (sn=1cm/s), and a nominal generation rate G0= 2,2.1019 cm−3.s−1.

On figure 3 we show the phase plots when the defect acts as a recombination center. Simulations C1, C2
and C3 correspond to the same energy level (Et = Ec − 0, 3 eV) and different electron capture cross-sections,
1.10−18, 1.10−16 and 1.10−14 cm2, respectively, while in C4 the defect level position is deeper in the band gap,
with Et = Ec − 0, 6eV and σn = 1.10−14 cm2. Simulations have been verified to be in the low-injection regime.
For instance, for C5, we obtain n0 = 1, 8.1012 cm−3 and nt0 = 5, 7.1013 cm−3. So, we are in the case of equation
(23) with nt0 � min(Nt, Na). Note that, unless otherwise stated, all the next results are obtained in low-injection
conditions. As expected from our analytical model, one can observe only one corner frequency in the phase plots.
The values of the corner frequencies are consistent with our computations (equation (32)). For C1, we can only
distinct the radiative lifetime (4, 2.10−7s) because it is much smaller than the capture one (1.10−5s). On the
contrary, for C3 only the capture time (1.10−9s) of the defect is visible. We see that we obtain the same plot for
C3 and C4. This is due to the fact that for a recombination center, the value of the corner frequency depends only
on σn and Nt, which are the same for both cases.

As discussed in Section II, not all defects act as recombination centers. When we place a defect near the
conduction band with a large electron capture cross-section compared to the hole one, we have an electron trap
(Et > E∗F ). As predicted by our analytical modeling, the phase plots exhibit V-shapes, as we can see on figure 4,
with three corner frequencies, except for C7 which corresponds to a lower Nt (1.1014cm−3). One can also check
that the equations derived in the analytical modeling section (especially (31)) yield correct quantitative results. For
C7, the radiative component is dominant, so only the radiative lifetime is visible, as explained in equation (27). On
these examples, we can easily identify the corner frequencies for C5 and C6, corresponding to a defect density of
1.1016cm−3, and 1.1015cm−3, respectively. However, for C7, where the defect density was decreased to 1.1014 cm−3,
the defect is invisible, radiative recombination prevails and the phase diagram is the same as without defect, with a
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Figure 3: Phase diagrams of simulation cases C1, C2, C3, C4, where the defect level acts as a recombination center.
Simulations have been performed under homogeneous generation and without SRV.
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Figure 4: Phase diagrams of simulation cases C5, C6, C7, where the defect level acts as a minority carrier trap.
Simulations have been performed under homogeneous generation and without SRV. The full line represents the
result of the simulation without defect level, with only radiative recombination.
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Figure 5: Phase diagrams of simulation cases C8 and C9, where the defect level acts as a majority carrier trap.
The simulations have been performed under homogeneous generation and without SRV.

single arc tangent function and a single corner frequency corresponding to the radiative lifetime. This emphasizes
that significant trapping/detrapping is required to be distinguished as a V-shape in the phase diagram.

In figure 5 we show the phase diagram when the defect level has been set close to the valence band, corresponding
to C8 and C9. In agreement with the analytical analysis, the phase diagram exhibits a single arc tangent behaviour.
For C8, the obtained corner frequency of 1.108Hz is in good agreement with that calculated from equation (35)
(9.107Hz), taking into account the value of nt0 , calculated in the dark from equation (24) with n0 = 0. For C9,
the obtained corner frequency is 4.107Hz, close to the analytical model result of 4,3.107Hz. Without taking into
account nt0 , we would have found a significantly larger value, 1, 6.108Hz, which illustrates the correction in the
corner frequency in the case of a majority carrier trap compared to a defect acting as a recombination center.

The cases C10, C11 and C12 correspond to the same electron trap configuration as C5, but we increased the
generation rate to G0= 2,2.1020, 2,2.1021, and 2,2.1022cm−3s−1, respectively. The comparison is shown in figure 6.
We observe that in low-injection the phase diagram is independent of the injection level (the curves are identical
for C10 and C5). But, when the injection is high enough, the hypothesis of low-illumination nt0 � min(Nt, Na)
is no longer respected. Indeed, we obtain for C11 n0 = 5, 5.1014cm−3 and nt0 = 2, 2.1015cm−3. nt0 is no longer
negligible compared to Nt, so it impacts the capture time (ωc,e) and we have vthσnn0 = 5, 5.106 rad/s which is not
negligible compared to ω2. We have approximately :ω2 ' ωr,e + vthσnn0 = 2, 5.107 rad/s (3, 9.106Hz),

ω3 ' ω2 + vthσn(Nt − nt0) = 1.108 rad/s (1, 6.107Hz).
(37)

The corner frequencies extracted from the simulations are in very good agreement with these analytical ap-
proximate expressions. Indeed, we find f2=3,9.106 Hz instead of 4.106 Hz and f3= 1,6.107 Hz instead of 1,7.107

Hz.
For C12, we see that the V-shape is less visible, because ω2 increases due to n0, and ωc,e = vthσn(Nt − nt0)

becomes smaller. We have n0 = 5, 4.1015cm−3 and nt0 = 7, 3.1015cm−3. The following analytical equations
approximate very well the simulated corner frequencies (f1=4,8.105 Hz, f2=1,1.107 Hz and f3=1,5.107 Hz) :

ω1 ' B(Na + nt0) = 3.106 rad/s (4, 8.105Hz),

ω2 ' ωr,e + vthσnn0 = 7, 3.107 rad/s (1, 2.107Hz),

ω3 ' ω2 + vthσn(Nt − nt0) = 1.108 rad/s (1, 6.107Hz).

(38)
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Figure 6: Phase diagrams of simulation cases C5, C10, C11, C12 where the defect level acts as a minority carrier
trap, for increasing generation rates. Simulations have been performed under homogeneous generation and without
SRV.

III.2 Non homogeneous photogeneration without SRV

When we simulate a more realistic non homogeneous photogeneration with α = 1, 4.105cm−1, we obtain the same
results as those obtained with an homogeneous photogeneration. We can explain this by the fact that, although
the generation profile is not homogeneous, the concentration of charge carriers is homogeneous, as we can see on
figure 7b for a frequency of 1.105Hz for the case C5, with the moments expressed in terms of generation level, for
the rising (up) and falling (down) parts of the sinusoid. This is because the carriers can homogenize across the
layer thickness. Indeed with the mobility values and thickness chosen here, we expect the carriers to be able to
homogenize for frequencies below 10 MHz. Even between 10 MHz and 100 MHz, we observed that the phase of
the PL was modified by less than a few degrees compared to the homogeneous generation. This is due to the fact
that we consider low-illumination conditions, so that the lifetimes are nearly independent from the concentration
of carriers. The ability for the carriers to homogenize has been also assessed by further increasing the absorption
coefficient, so that the photogeneration is only on the surface, where no significant change was observed in the
carrier concentration profile and in the phase of the PL. Consequently, we can say that our hypothesis of neglecting
the Beer-Lambert’s law in our analytical approach is valid, and there is no significant impact of either the absorption
coefficient or the thickness of the sample, as long as low-illumination conditions are fulfilled in each point of the
sample and that we can neglect re-absorption.

III.3 With SRV

We now increase the surface recombination. Depending on the ability of transport to homogenize the carrier
distributions, this may produce space-dependent carrier concentrations, so that the main hypothesis of homogeneity
is challenged. A classical way to transpose SRV into a bulk equivalent while keeping the hypothesis of homogeneity,
is to consider another recombination term to take account of this additional recombination path in the continuity
equations (2) and (3), which can be expressed as −n.ωsn, with ωsn defined by [3][4] :

ωsn =
2.sn
d
, (39)

with d the thickness of the sample.
First, we consider only radiative recombination and surface recombination without any bulk defect. In C13

and C14, the surface recombination velocity sn was taken equal to values of 1.103 and 1.105 cm/s, respectively.
The phase diagrams are compared in figure 8. We observe that the corner frequency increases with sn. This was
expected because it means that the effective lifetime decreases. When sn is low (1.103cm/s), we see only one corner
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Figure 9: Phase diagrams of simulation cases C15 and C16, with a bulk defect level acting as a recombination
center (Et = Ec− 0, 6 eV) for electron capture cross sections of 1.10−14 and 1.10−16 cm2, respectively. The surface
recombination velocity was set to sn= 1.105cm/s.

frequency that can be identify with :
ω1 = 2πf1 = ωrad + ωsn. (40)

For high values of sn, 1.105cm/s or higher, the fit with a single arc tangent function is not good and requires
the sum of three arc tangent functions. Indeed, the diffusion phenomenon is visible at high frequency and limits the
recombination rate at the surface and so the corner frequency. From [18] and [19] we have the following equations :ω−11 = ω−1diff + ω−1sn ,

ω3 = ωsn,
(41)

with

ωdiff =
π2

d2/D
, (42)

and D is the diffusion coefficient related to the mobility through Einstein’s relation

D = µ
kBT

q
. (43)

The determination of ω3 is not very precise here since its impact is rather at frequencies beyond the scanned
ones (i.e. larger than 1.108Hz), while for ω2, no equation has been found.

Some techniques exist to determine surface recombination velocities using TRPL with different excitation wave-
lengths (so that the absorption coefficient changes) [20]. A similar protocol might be explored with HF-MPL,
combined with changing the excitation intensity, to separate the contributions of surface and bulk recombinations.

We now add a bulk defect level acting as a recombination center. Simulations C15 and C16 correspond to a defect
level at Et = Ec − 0, 6 eV with an electron capture cross-section equal to 1.10−14 and 1.10−16 cm2, respectively,
while a surface recombination velocity of sn= 1.105cm/s was taken into account. Like in the radiative case, in
figure 9 we observe that the corner frequency is increased compared to the figure 3 and that the diffusion makes the
curves more complex. In that case, we fit them with 5 arctangent functions. To compute analytically the corner
frequencies, we add a recombination term in equations (2) and (3) which takes into account SRV and diffusion. It
leads to slight modifications of the expressions of the three corner frequencies expressed in (18), and we introduce
ω5 = ωsn when it is needed. No equation has been found for ω4.

Finally, we consider the effect of SRV in the case of a bulk electron trap (Et = Ec− 0, 18 eV). Simulations C17,
C18 and C19 are obtained for surface recombination velocities sn= 1.103, 1.105, and 1.107 cm/s, respectively, and
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Figure 10: Phase diagrams of simulation cases C5, C17, C18, C19, with a bulk defect level acting as a minority
carrier trap, for increasing values of surface recombination velocity, sn= 1, 1.103, 1.105, and 1.107 cm/s, respectively.

they are compared on figure 10 to the case C5 studied before of negligible surface recombination, sn= 1 cm/s. We
note that the second corner frequency, linked to the release time, is independent of the SRV. This is compatible with
the modification of (2) and (3) with ωsn as suggested before (not linked to nt). Like in the radiative case, we can
distinguish between low SRV and high SRV. As written in Table 3, C19 has been fitted with only four arctangent
functions instead of five, because the fifth one has little impact on the diagram.

So far, we have considered that the SRV is the same on both surfaces, but its impact on the front face, where
the photogeneration is the highest, is not the same as on the back face. Simulations C20 and C21 are obtained
for the same electron trap level as C5 and C18, but with asymmetric surface recombination velocities : SRVfront
= 1cm/s and SRVback=1.105cm/s for C20, and SRVfront = 1.105cm/s and SRVback=1cm/s for C21. These two
values corresponding to the symmetric values taken in C5 and C18. In figure 11, we can see that the phase diagrams
corresponding to C20 and C21 are the same as that of C18 (high symmetric values of SRV) at low frequency, while
at high frequency C20 is similar to the case of C5 (low symmetric value of SRV) whereas C21 is similar to C18. This
illustrates that the hypothesis of homogeneity depends on the frequency of excitation, and that at high frequency
we are more sensitive to what happens in the front part, considering that generation rate is higher at the front
surface.

IV Comparison with experimental data

To illustrate the above developments, we will perform an analysis of an experimental result from a sample of
CIGS at low-injection.

The experimental setup we have used is based on a conventional PL microscopy scheme. A sketch of it can be
seen on figure 12. The light source is a fast modulated laser at 638 nm. The modulation is based on sinusoidal
variations of the light intensity around a given working point. In this study the ratio between modulated and
continuous part of the modulated light is close to 60%, however the response of the sample remains sufficiently
linear, the second harmonic being less than 3% of the fundamental signal. The light is sent to the system via an
injection fiber with 100 µm core. A lens is placed at the output of the fiber and allows for collimating the laser
beam in a horizontal direction. Then a dichroic mirror sends the light to the sample vertically. The following lens
allows for focusing on the sample which is at the bottom of the system. The beam size on the sample was measured
to be 200 µm. The photoluminescence signal is then collected via the dichroic mirror and supplementary long pass
filters vertically and sent into a 100 µm core multimode fiber. The lens focusing into the last fiber is chosen so
that we probe a 50 µm area inside the illuminated area, avoiding diffusion effects. To detect the signal with an
optimal sensitivity we used a single photon avalanche detector. Then a Picoharp 300 time Correlated Single Photon
Counter (TCSPC) and a LabVIEW software allow for reconstructing one period of the modulated signal. Once
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Figure 11: Phase diagrams of simulation cases C20 and C21, with high (resp. low) SRV on back surface and low
(high) SRV on front surface, compared to the C5 and C18 with symmetric low and high surface recombination
velocities, respectively. In all cases the same bulk electron trap properties were considered.

curve Ec-Et (eV) -log(σn/1cm2) -log(σp/1cm2) log(Nt/1cm−3) SRV sn (cm/s)

C1 0,3 18 18 16 1

C2 0,3 16 18 16 1

C3 0,3 14 14 16 1

C4 0,6 14 18 16 1

C5 0,18 15 18 16 1

C6 0,18 15 18 15 1

C7 0,18 15 18 14 1

C8 1,1 15 18 17 1

C9 1,15 15 18 17 1

C10 (G×10) 0,18 15 18 16 1

C11 (G×100) 0,18 15 18 16 1

C12 (G×1000) 0,18 15 18 16 1

C13 x x x x 1.103

C14 x x x x 1.105

C15 0,6 14 14 16 1.105

C16 0,6 16 14 16 1.105

C17 0,18 15 18 16 1.103

C18 0,18 15 18 16 1.105

C19 0,18 15 18 16 1.107

C20 0,18 15 18 16 1/1.105

C21 0,18 15 18 16 1.105/1

Table 2: Summary table of simulation parameters
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curve type of simulation f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f5 (Hz)

C1 recombination center (defect invisible) 4.105

C2 recombination center 2.106

C3 recombination center 1,6.108

C4 recombination center 1,6.108

C5 trap 1.105 3.106 1,9.107

C6 trap 2,6.105 3.106 4,8.106

C7 trap (defect invisible) 3,8.105

C8 hole trap 9.107

C9 hole trap 4.107

C10 trap 1.105 3.106 1,9.107

C11 trap 1,5.105 4.106 1,7.107

C12 trap 4,8.105 1,1.107 1,5.107

C13 radiative+SRV 1,8.106

C14 radiative+SRV 3.107 8,5.107 1,38.108

C15 rec. center+SRV 2,5.108

C16 rec. center+SRV 3,2.107 8,5.107 1,4.108

C17 trap+SRV 3.105 3.106 2.107

C18 trap+SRV 2.106 3.106 4,9.107 9.107 1,4.108

C19 trap+SRV 2,2.106 3.106 5,8.107 3,5.108

C20 trap+SRV 1.106 3.106 2,3.107

C21 trap+SRV 1,1.106 2,6.106 2,9.107 7,5.107 1,85.108

Table 3: Corner frequencies obtained from a fit to the phase diagrams calculated from full numerical modeling

the modulated signal is recorded, we can extract the phase and amplitude of the first harmonic. Note that the
phase of the laser modulation is also recorded prior to any measurement by replacing the sample by a mirror and
the long-pass filter by a neutral density one. The phase presented here is thus the phase shift between PL and
light excitation. Using a TCSPC allow for a high sensitivity from a few hundred hertz to 200 MHz which is the
modulation limit of the laser.

The comparison of the experimental result and the fit according to our analytical model with the sum of three
arc tangent functions is shown in figure 13.

We find the following values for the three corner frequencies:


f1 = 1, 4.104 Hz,

f2 = 6, 5.104 Hz,

f3 = 2, 2.108 Hz.

(44)

As we see a V-shape, we can deduce that this case corresponds to the case of a minority carrier trap (electron
trap) as described in the modeling sections. Neglecting surface recombinations, we can use the following equations
:


ω1 = (vthσpNa + ωrad

ωr,e
ωc,e + ωrad

) ∗ ωc,e + ωrad
ω2 + ωc,e + ωrad

,

ω2 = ωr,e + vthσpNa,

ω3 = ωc,e + ωrad + ω2.

(45)

We take the values of radiative recombination coefficient (B) and doping acceptor concentration (Na) in Table
1, so that ωrad = 2, 4.106 rad/s. Then we can simplify equations (45), and we find :
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curve Ec − EF ∗ (eV) ωc,e ωr,e ωr,h ωsn f1 (Hz) f2 (Hz) f3 (Hz) f5 (Hz)

C1 0,11 1.105 1,8.102 1,4.10−8 8,7.103 4,8.104 4,8.104 4.105

C2 0,23 1.107 1,8.104 1,4.10−8 8,7.103 4,8.104 5,1.104 2.106

C3 0,11 1.109 1,8.106 1,4.10−4 8,7.103 1,6.108 4,8.108 4,8.108

C4 0,11 1.109 16 1,6.10−3 8,7.103 4,8.104 4,8.104 1,6.108

C5 0,29 1.108 1,9.107 1,4.10−10 8,7.103 1.105 3.106 1,9.107

C6 0,29 1.107 1,9.107 1,4.10−10 8,7.103 2,6.105 3.106 4,8.106

C7 0,29 1.106 1,9.107 1,4.10−10 8,7.103 3,6.105 3.106 3,2.106

C8 0,29 6,2.108 6,1.10−9 4,2.105 8,7.103 2,4.105 2,4.105 1.108

C9 0,29 2,6.108 8,8.10−10 2,9.106 8,7.103 7,4.105 7,4.105 4,3.107

C10 0,29 1.108 1,9.107 1,4.10−10 8,7.103 1.105 3,1.106 1,9.107

C11 0,29 <1.108 1,9.107 1,4.10−10 8,7.103 1,5.105 3,9.106 1,7.107

C12 0,29 <1.108 1,9.107 1,4.10−10 8,7.103 4,9.105 1,2.107 1,7.107

C13 x x x x 8,7.106 1,8.106 x x

C14 x x x x 8,7.108 3.107 ? 1,4.108

C15 0,11 1.109 16 16 8,7.108 1,9.108 4,8.108 4,8.108

C16 0 1.107 0,16 16 8,7.108 3,2.107 4,8.108 4,8.108 1,4.108

C17 0,29 1.108 1,9.107 1,4.10−10 8,7.106 2,9.105 3.106 2.107

C18 0,29 1.108 1,9.107 1,4.10−10 8,7.108 2.106 3.106 4,7.107 1,4.108

C19 0,29 1.108 1,9.107 1,4.10−10 8,7.1010 2,1.106 3.106 5,5.107 1,4.1010

C20 0,29 1.108 1,9.107 1,4.10−10 ? ? 3.106 ?

C21 0,29 1.108 1,9.107 1,4.10−10 ? ? 3.106 ? ?

Table 4: Analytical computation of the corner frequencies of the PL phase shift: f1 = ω1/2π, f2 = ω2ter/2π,
f3 = ω3/2π, using equations (18)-(22) for C1-C12, and equations (40) and (41) for C13-C14. For C15-C19, the
equation (18) has been modified to take into account SRV and diffusion. The ’?’ indicate the absence of equations
to calculate these values.

Figure 12: Sketch of the experimental setup
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Figure 13: Example of experimental phase diagram obtained on a CIGS sample and corresponding fit using our
analytical model.



σp =
ω1

v.Na
= 3.10−19 cm2,

Ntσn =
ω3

v
= 140 cm−1,

σnni. exp(
Et − Ei
kBT

) =
ω2 − ω1

v
= 0, 032 cm−1.

(46)

We have three equations for four unknowns, so there is not a unique solution. Eventually, we managed to
fit the diagram with the following parameters : Et = Ec − 0, 26 eV, Nt = 3, 7.1017cm−3, σn = 3, 8.10−16cm2,
σp = 3.10−19cm2. These values are consistent with previous published results.[21] In order to increase the reliability
of the extracted parameter values, one potential route is to perform experiments at excitation intensities beyond
the low level injection and to use the simulation to study the dependence of the phase diagram on the excitation
power. This of course is beyond the scope of this work and it deserves further studies.

V Conclusion

In this work we have developed a simplified analytical approach of the MPL experiment using a single defect level
in the band gap. We have shown that, if the level acts as a recombination center or as a majority carrier trap, the
phase of the MPL depends monotonously on the frequency, and the phase diagram can be reproduced by a single
arc tangent function. On the contrary, if the level acts as a minority carrier trap (its energy location being close to
the minority carrier band), the phase diagram can be reproduced by a sum of three arc tangent functions defining
three corner frequencies, the function with the intermediate corner frequency having an opposite sign, which thus
leads to a peculiar V-shape behavior. The analytical approach has been compared to full numerical modeling,
and we have studied the impacts of different parameters on the phase diagram. We have thus shown that it is
possible to deduce qualitative and, to some extent, quantitative information from this experiment. This study can
also point out some limitations of the low-illumination behaviour. When a single arc tangent function can fit the
phase diagram, one cannot identify the origin of the recombination process (radiative or bulk SRH, or SRV). It is
then mandatory to go to higher illumination intensities and to make an appropriate analysis in order to potentially
distinguish between these processes. The technique could also be applied to a non homogeneous structure like a
stack of semiconductor layers with different doping or a full solar cell. However, transport effects will then play
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a huge role due to band bending and difference of parameters between the layers, which will then require further
modeling studies in order to be able to analyze properly the experimental data.
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A Appendix 1 : Corner frequencies

Demonstration that ω1 and ω3 are real and positive in a usual case
We define 

ωa = A1 − iω,
ωb = −A2,

ωc = A3 − iω,
ωd = A4 − iω.

(A.1)

First, we need to show that ω2
0 ≥ 0 and S ≥ 0. Only ωb can be negative. If it is positive, it is straightforward.

If it is negative, then we note that {
ωb ≥ −Bn0,

ωd ≥ Bn0,
(A.2)

so that
|ωb|ωc ≤ Bn0(vthσpnt0 +B(Na + 2no + nt0)) ≤ ωaωd. (A.3)

So, we always have ω2
0 ≥ 0 and S ≥ 0. Consequently, we can say that if ω1 and ω3 are real, they are positive.

The usual case we are interested in here is the case with ωc ≤ ωa. It is the case where more electrons occupy
the defect when it is enlightened (from equation (19) nt1 ≥ 0), so when the defect is not near the valence band.

ω1 and ω3 are solution of
x2 − S.x− ω2

0 = 0. (A.4)

Let’s compute the discriminant
∆ = S2 − 4ω2

0 . (A.5)

We have :
∆ = ω2

a + ω2
b + ω2

d + 2ωaωb + 2ωaωd + 2ωbωd − 4ωaωd − 4ωbωc, (A.6)

∆ ≥ ω2
a + ω2

b + ω2
d + 2ωaωb − 2ωaωd + 2ωbωd − 4ωbωa, (A.7)

∆ ≥ (ωb + ωd − ωa)2 ≥ 0, (A.8)

so ω1 and ω3 are real.
Then 

ω1 =
S −
√

∆

2
,

ω3 =
S +
√

∆

2
.

(A.9)

If ωb + ωd ≥ ωa 
ω1 ≤

S − (ωb + ωd − ωa)

2
= ωa,

ω3 ≥
S + (ωb + ωd − ωa)

2
= ω2.

(A.10)

If ωb + ωd ≤ ωa, 
ω1 ≤

S − (ωa − ωb − ωd)
2

= ω2,

ω3 ≥
S + (ωa − ωb − ωd)

2
= ωa.

(A.11)

So, in both cases, we have 0 ≤ ω1 ≤ ω2 ≤ ω3.
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B Appendix 2 : Low-illumination approximation

We suppose we work in the low-illumination approximation, as defined in the article.
First, we will show that ω2ter=ω2.
From the hypotheses and the fact that nt1 ≤ nt0 , we have

nt1 � Na + nt0 . (B.1)

In low-frequency, it can be written
ω2bis

ω2
0

G1� Na + nt0 . (B.2)

From that, we have

n0
Na + 2.n0 + nt0

ω2bis

ω2
� n0

Na + 2.n0 + nt0

ω2
0

ω2G1
(Na + nt0) ' G0

G1
' 1, (B.3)

with, if n is a linear function of G,
ω2
0

ω2G1
=

1

n1(ω = 0)
' G0

G1n0
. (B.4)

As we have
ω2ter = ω2 +

n0
Na+ 2.n0 + nt0

ω2bis, (B.5)

we can deduce that ω2ter=ω2.
Secondly, we need to show why we can neglect the coupling between orders 0 and 1 in the equations (17) of n0

and nt0 .
If we have nt0 � min(Na, Nt), then :

• 2vthσpn
2
t1 � vthσpnt0Na,

• 2Bn2
1 � Bn0Na,

• 2vthσpnt1n1cos(φn,1 − φt,1)� vthσpnt0Na,

• 2Bnt1n1cos(φn,1 − φt,1)� Bn0Na,

• 2vthσnnt1n1cos(φn,1 − φt,1)� vthσnn0Nt.

If we have nt1 � nt0 then :

• 2vthσpn
2
t1 � vthσpn

2
t0 ,

• 2Bn2
1 � Bn0Na,

• 2vthσpnt1n1cos(φn,1 − φt,1)� vthσpnt0Na,

• 2Bnt1n1cos(φn,1 − φt,1)� Bn0Nt0 ,

• 2vthσnnt1n1cos(φn,1 − φt,1)� vthσnn0Nt.

So the system of equations (17) becomes :

{
0 = G0 − (Na + nt0)vthσpnt0 −Bn0 ∗ (Na + nt0) + (Nt − nt0)ωr,h,

0 = G0 + nt0ωr,e − n0vthσn(Nt − nt0)−Bn0 ∗ (Na + nt0).
(B.6)

Consequently, n0 and nt0 are independent from n1 and nt1 .
Now, we will show some calculation steps for the approximation of the corner frequencies values in low-

illumination approximation.
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Trapping of electrons

As nt0 � Nt, we have, from (24), that ωr,h � vthσpNa. As Et > E∗F , we have that ωr,e � vthσpNa.
Our hypotheses implies that :

• A1 = iω + vthσnNt +BNa

• A3 = iω + vthσpnt0 +BNa

• A4 = iω + vthσpNa +Bn0

• vthσnn0 � ωr,e + vthσpNa

• vthσpnt0 .ωr,e � ω2
0

• Bn0vthσnNt � ω2
0

So, from (18), 
ω2 = ωr,e,

S = ωc,e + ωrad + ω2,

ω2
0 = ωc,evthσpNa + ωradω2.

(B.7)

Recombination center

As nt0 � Nt, we have, from (24), that ωr,h � vthσpNa. As Et < E∗F , we have that ωr,e � vthσpNa.
We have the same simplifications as for the trapping of electrons.
So, we can derive from (18) :

ω2 = vthσpNa,

S = ωc,e + ωrad + vthσpNa = ω2 + ωc,e + ωrad,

ω2
0 = (ωc,e + ωrad)vthσpNa = ω2 ∗ (ωc,e + ωrad).

(B.8)

Trapping of holes

We are now interested in the case of Et < E′F , with nt1 � nt0 . We suppose ωr,e �min(ωr,h, ωc,e) (which is a
condition very easy to meet).

Our hypotheses implies that :

• A1 = iω + vthσn(Nt − nt0) +B(Na + nt0)

• A3 = iω + vthσpnt0 +B(Na + nt0)

• A4 = iω + vthσp(Na + 2nt0) +Bn0 + ωr,h

• vthσnn0 � vthσpNa + ωr,h

• (vthσpnt0 +B(Na +B(Na + nt0)).ωr,e � ω2
0

• Bn0[vthσn(Nt − nt0)− vthσpnt0 ]� ω2
0

• vthσnn0vthσpnt0 � ω2
0

Then, from (18) : 
ω2 = ωr,h + vthσp(Na + 2nt0),

S = ωc,e + ωrad + ωr,h + vthσp(Na + 2nt0),

ω2
0 = (ωc,e + ωrad)(ωr,h + vthσp(Na + 2nt0)).

(B.9)
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