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Abstract

The second order statistical properties of time point processes (PP) are described by the time

coincidence function (CF) and the frequency Bartlett spectrum (BS). For PPs recorded by pulses appearing

at random time instants, as in photodetection experiments, the CF can be measured by various physical

devices showing in particular the famous bunching effect of photons. On the other hand, for PPs recorded

by the intervals between successive points (lifetimes), especially for renewal processes, there is no usual

procedure for the estimation of the CF, and the aim of this paper is to describe an approach of this

problem. The starting point is a mathematical relation between the CF and the set of probabilities

density functions of the lifetimes of any order of the PP. As a consequence the CF can be obtained by

processing the results of the multiple normalized histograms of these lifetimes. In the cases, relatively

rare, where the mathematical expression of the CF is known in closed form, the correct behavior of the

procedure is verified by an experimental analysis of simulated data. The method is extended in order to

verify the relationship between the CF and the BS.

Index Terms

Point processes, Poisson processes, renewal processes, coincidence function measurement, Bartlett

spectrum, shot noise, counting methods.

I. INTRODUCTION

Numerous physical phenomena appear in the form of events occuring at random time instants. It is for

example the case in some Particle Physics experiments where the purpose is to determine the instants

where particles are emitted or detected. Similarly, in Statistical Optics the study of the instants when

photons are detected yields information on the structure of Electromagnetic Field (Saleh, 1978). This

also appears in engineering problems and the best example is the shot noise due to the random emission
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2 COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION

of electrons in electronic systems. At a macroscopic scale random time events appear also in traffic

problems of communication systems (Gelenbe and Pujolle, 1998).

The mathematical description of such phenomena makes use of the theory of stochastic point processes

(PP). There are numerous books and papers concerning PPs that can be classified approximately in two

groups. In the first one the emphasis is dominated by the rigorous, and in general relatively abstract,

aspect of the theory, without great emphasis on its applications. A good example is (Daley, 1983). Another

approach presents mathematical results in a less abstract form and is more devoted to the interpretation

and the use of theoretical results. A good example is (Cox and Isham, 1980). In this paper it is this

second approach which is used.

This means that the introduction of the coincidence function and the Bartlett spectrum presented in

the next section cannot be considered as a complete and rigorous description of these quantities, which

can be found for example in (Daley, 1983). In particular our definition of the Bartlett spectrum (BS) is

quite similar to the one presented on the original paper (Bartlett, 1963), even if our notations are rather

different. But those interested in a more detailed understanding of the role of the coincidences in the

analysis of PPs, can consult some particular references such as (Macchi, 1971, Macchi, 1975).

The purpose of this paper is to introduce a method for estimation of the CF of PPs when they defined

from the distances between successive points, which is then especially well adapted to the case or renewal

PPs. In order to explain the method, let us first recall the present situation concerning CF estimation or

measurements. It is well known that there are two possible approaches for the statistical description or for

the generation of PPs. In the first one, called counting approach, a PP is defined by the joint probability

distribution of the numbers Ni of points appearing in non-overlapping arbitrary intervals ∆Ti, 1 ≤ i ≤ K,

where K is also an arbitrary integer. This procedure is especially well adapted to Poisson processes for

which the random variables (RV) Ni are independent and with Poisson distributions defined by their

mean values mi. The second approach is called lifetime description. The lifetime of order 1 of a time PP

is the distance between successive points. Let Ti denote the increasing sequence of random time instants

of a PP, and let Xi = Ti − Ti−1 be the corresponding sequence of lifetimes. It is clearly a sequence

of non-negative RVs and there is a one to one correspondence between Ti and Xi. As a consequence

any PP is equivalent to a sequence of non-negative RVs. This approach is especially adapted to renewal

stationary PPs defined by the fact that the corresponding Xis are independent an identically distributed

(IID) random variables. If the mathematical equivalence of these two approaches is obvious, it is however

not always easy to pass in closed form, for example, from the probability distributions of lifetimes to those

of counting. The CF belongs in its definition clearly to the counting approach. Indeed the coincidence

event (of order one) is defined by the fact that 2 infinitesimal distinct intervals ∆T1 and ∆T2 contain
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together 1 point of the PP. There are various electronic systems devoted to the detection of coincidences in

a random sequence of pulses mathematically described as a PP. These devices are widely used in nuclear

physics or in statistical optics. For example, the famous bunching effect of photons, showing that the

detection of photons of an electromagnetic field can yield a PP that is not a Poisson process, is exhibited

and analyzed by such coincidences experiments (Saleh, 1978). The results of these experiments are the

corner stone of the validity of Quantum Mechanics in statistical optics (Picinbono and Bendjaballah,

2010). On the other hand, when a PP is defined from its lifetimes Xi, as for example all the renewal PPs,

it is much more difficult to estimate the corresponding CF. This is the main purpose of the following.

This paper is then devoted to computer experiments and estimation of second-order properties of PPs.

After a short review of the mathematical background and the notations used for this purpose, we present

in Section III experimental results concerning the coincidence function especially in the cases where this

function has an explicit mathematical expression. The last section starts from the fact that the BS which

defines the second-order spectral properties of a PP is not directly measurable. However it is used in the

expression of various quantities that can be easily measured. Using this remark, experimental results are

presented on various different PPs and the measurements show a very good agreement between theoretical

prediction and experimental result, which here also confirm the interest of the algorithms used for these

experiments.

II. FUNDAMENTAL THEORETICAL RESULTS AND NOTATIONS

Let P be a stationary PP of density µ. The random points of this process are time instants denoted

Ti and let N(t) be the random number of points Ti in the interval [0, t[, where 0 is an arbitrary origin

of time. The function N(t) is clearly a non-decreasing stepwise continuous time random function but its

increments ∆N(t, τ) = N(t+ τ)−N(t) are stationary.

It is convenient to introduce the differential increments dN(t) defined by dN(t) = ∆N(t, dt). For

regular PP, especially without accumulation points, these increments are Bernoulli random variables (RV)

taking only the values 0 and 1, and the probability of the value 1 is µdt. As a consequence the mean

value of dN(t) is E[dN(t)] = µdt, showing that µ is effectively the density of the PP. For the following

discussion it is appropriate to introduce the centered increments dN̄(t) defined by dN̄t) = dN(t)−µdt,

which then are zero mean valued RVs.

Consider now two arbitrary distinct non-random time instants t1 and t2. The coincidence event at

these instants can be defined by the fact that dN(t1)dN(t2) = 1. This leads to the introduction of the

coincidence function (CF) c(t1, t2) defined by

E[dN(t1)dN(t2)] = Pr{[dN(t1) = 1] ∩ [dN(t2) = 1]} = c(t1, t2)dt1dt2. (1)

September 16, 2019 DRAFT



4 COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION

For regular PPs the increments dN(t1) and dN(t2) become uncorrelated when |t2 − t1| → ∞, which

implies that in this limit situation c(t1, t2) tends to µ2. This leads to introduce the centered CF (CCF)

defined by

E[dN̄(t1)dN̄(t2)] = c̄(t1, t2)dt1dt2 = [c(t1, t2)− µ2]dt1dt2. (2)

In many instances this CCF c̄(t1, t2) is easier to manipulate than the initial CF c(t1, t2). Note, however,

that these two coincidence functions require that t1 6= t2 because the coincidence event implies that their

instants are distinct. The case t1 = t2 requires a specific treatment presented later.

The CCF exhibits some obvious properties.

1. Since P is stationary, the CF depends only on the difference t1 − t2 and from now it is written as

c(t1 − t2). According to the previous point, c(t) is defined for any nonzero time t.

2. The coincidence event is unchanged under any permutation of the instants t1 and t2 of (1) or (2).

Consequently the CF c(t) is an even (or symmetric) function of t. This property holds also for c̄(t).

3. It follows from the definition of c̄(t) that lim t→∞c̄(|t|) = 0.

4. The coincidence function defined by (2) looks like a covariance function. That is, however, not the

case. Indeed any covariance function must be non-negative definite, which implies a non-negative Fourier

transform (FT), which is the power spectrum. We shall see later examples of coincidence functions with

Fourier transforms taking negative values.

Let us now consider the case t = 0. For this purpose, we use the point noted above that the RV dN(t)

takes only the values 0 or 1. This implies that dN(t) = dN2(t). Taking into account this fact, we can

extend the expression (2) which becomes for any t1 and t2

E[dN̄(t1)dN̄(t2)] = [µδ(t1 − t2) + c̄(t1 − t2)]dt1dt2, (3)

where δ(.) is the Dirac distribution. This allows us to introduce the extended CCF defined by

ce(t) = µδ(t) + c̄(t). (4)

Because of the term δ(t), this quantity is not an ordinary function but a distribution, even if we maintain

the use of the term “function”. It has then no finite value for t = 0. This function is called the covariance

density in the original paper of Bartlett (1963). It is then defined for any t, it is symmetric and tends to

0 when t→∞. But the basic difference from c(t) is that ce(t) is now non-negative definite, as we shall

see later. This implies that its FT is a non-negative function called the Bartlett spectrum (BS) which can

be written as

B(ν) = µ+ C̄(ν), (5)

where C̄(ν) is the FT of c̄(t).
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The best and simpler examples of BS appear in the case of stationary (or homogeneois) Poisson PPs.

Such processes are characterized by the fact that the increments dN(t) introduced above are independent.

This implies that c(t) of (1) is µ2 and c̄(t) of (2) is zero. This yields that the BS is constant and equal

to the density µ. In terms of signal properties, this means that a Poisson PP is a white noise of constant

spectral density µ. This fact was first published independently long time ago in the famous papers (Blanc-

Lapierre, 1945, Rice, 1944) describing the shot noise at the end of the Second World War, in a period

where scientific communication was almost impossible between Europe and the USA.

Poisson processes appear as appropriate statistical models of numerous physical systems at the micro-

scopic and macroscopic scale as well. Indeed, they are characterized by the complete lack of memory

and this assumption is often quite coherent with the structure of such systems. There are, however,

cases where this assumption cannot be accepted, and the simplest statistical models following Poisson

processes are stationary renewal PPs. Such PPs are defined by the fact that the time intervals between

successive points, sometimes called lifetimes, are independent and identically distributed (IID) positive

RVs defined by a probability density function (PDF) f(t). This PDF is then the only quantity necessary

for the complete mathematical description of a renewal PP. Note that a Poisson PP of density µ is also

a renewal PP for which the life time is a positive exponential RV with the PDF f(t) = µ exp(−µt).

There are renewal PPs for which the expression of the coincidence function can be obtained in closed

form. This is especially the case of Erlang (2) processes, as we shall see later. In these cases, the

calculation of the BS B(ν) of (5) is reduced to the one of the FT C̄(ν) of the CCF c̄(t).

Since, however, the PDF f(t) contains all the statistical properties of a renewal process, the BS must

be expressed in terms of this function, even if its expression can be rather complicated. In fact that is

not the case because there exists a relation between the CF and the so called renewal function (see p. 52

of Cox and Isham, 1980) which can easily be calculated from f(t).

In order to introduce this function suppose that a point of P is recorded at time t1. Let t2 be an

arbitrary time instant posterior to t1. The quantity f(t2− t1)dt2 is the probability that the first point of P

recorded after t1 is in the interval [t2, t2 +dt2[. Similarly fn(t2− t1)dt2 has the same meaning, provided

that first is replaced by nth. This event appears when the interval [t1 + dt1, t2[ contains n− 1 points of

P . The coincidence event used for the definition of the CF by (1) appears when there are two points

of P simultaneously in [t1, t1 + dt1[ and [t2, t2 + dt2[, regardless of the number of points recorded in

[t1 + dt1, t2[. This yields that c(t2 − t1) of (1) is equal to µ
∑∞

n=1 fn(t2 − t1), where f1 is simply f .

Let Xi, (i ≥ 1), be the distances between the successive points of P (lifetimes) posterior to t1. It is

clear that f(t) and fn(t) are the PDFs of X1 and X1 +X2 + · · ·+Xn respectively. In the case of renewal

processes this expression takes a very interesting form because the intervals Xi introduced just above are
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IID random variables with the PDF f(t). This implies that the PDF of their sum is the nth convolution

f∗n of f(t). As a consequence, we have c(t) = µh(|t|) where h(t) is the renewal function defined by

the basic renewal equation

h(t) =

∞∑
n=1

fn(t) =

∞∑
n=1

f∗n(t). (6)

Note also that, since the lifetimes are positive RVs, the PDF f(t) is causal, which means equal to 0 for

t < 0. This property is valid for all the convolutions appearing in the series defining h(t). The existence

of a series of convolutions leads to the use of the Laplace transforms which, by the causality property,

are one-sided. Let F (s) be the Laplace transform of f(t) defined by

F (s) =

∫ ∞
0

f(t) exp(−st)dt, (7)

which implies the property |F (s)| < 1. Noting that the Laplace transform of f∗n(t) is F (s)n, we deduce

that (6) can be written in terms of F (s) in such a way that the Laplace transform H(s) of h(t) becomes

H(s) =
F (s)

1− F (s)
. (8)

From these expressions it is possible to deduce an interesting form of the BS. From (2) we deduce

that c̄(t) = c(t)− µ2 = µh(|t|)− µ2 and its one-sided Laplace transform is µH(s)− µ2/s. As a result,

the Fourier transform C̄(ν) of the symmetric function c̄(t) is 2< [µH(jω) + µ2/(jω)], with ω = 2πν,

and according to (5) the expression of the BS becomes

B(ν) = µ

[
1 + 2 <

{
F (j2πν)

1− F (j2πν)

}]
. (9)

It is interesting to verify that the BS of a stationary Poisson PP is effectively µ because in this case

the term F/(1− F ) is purely imaginary, and then its real part is zero.

III. ESTIMATION OF COINCIDENCE FUNCTIONS

The principle of the estimation of the CF by using the relation c(t) = µh(|t|) and Eq. (6) is based on

the idea to approximate the series (6) by a finite sum of P terms, each of them being a PDF that can be

estimated from observed data. The choice of the value of P can be modified by taking into account the

precision of the results. An immediate consequence will however appear. It was shown above that the

coincidence function tends to µ2 when t→∞. This is obviously impossible if the series is replaced by

a finite sum. Indeed each member of this sum is a PDF tending to zero for t→∞.

The first point is to know in which form the PP analyzed is recorded. As indicated before, a PP can

be defined by its lifetimes which are the random distances Xi between successive points. In other words,
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PICINBONO: COINCIDENCE FUNCTIONS AND BARTLETT SPECTRA OF POINT PROCESSES 7

recording a PP is equivalent to recording a set of positive RVs. Since various statistical analyses will be

realized with these RVs, it is obvious that the accuracy of the results will depend on the number N of

these variables. This number must be as large as possible, taking into account the possible duration of

the following experiments or the memory capacity of the computers used in this task. In the experimental

results presented below N is of the order of 107. It can be greater if necessary.

The observations Xi can come from physical experiments, as in measurement of photon coincidence

in statistical optics, or be generated by computer simulation. It is this last method that is used in all what

follows. This means that the simulation of a renewal PP is equivalent to the generation of a sequence of

RVs that are IID with a given PDF. There are excellent programs to generate sequences of RVs Wi that

are IID and uniformly distributed in the interval [0, 1]. By using an instantaneous appropriate non-linearity

such as Xi = f(Wi) it is possible to transform these Wis into Xis with a given PDF (see Devroye, 1986),

and it is this procedure that we shall use to generate various renewal PPs.

In order to estimate the coincidence function, the starting point is the relation

c(t) = µ

∞∑
k=1

fk(|t|) (10)

indicated in the previous section. By an appropriate algorithm we shall estimate from the observation of

the N RVs Xi the PDFs fk(t) and replace the series (10) by a finite sum of P terms. The choice of the

value of P can be modified by taking into account the precision of the results. At this step it remains

to estimate from the simulated data the P PDFs appearing in (10). This can be done easily by using

P normalized histograms. But this possible procedure takes long in computing, and we shall introduce

another way requiring only one histogram, which yields immediately the estimation of the coincidence

function. Let us now explain its principle.

Suppose that, instead of N , we start from N +P observed values Xi. From these values we construct

P row (1×N ) vectors Sk, called sum vectors and defined for 1 ≤ k ≤ P by

Sk =

[
k∑
1

Xi,

k+1∑
2

Xi, . . . ,

k+N−1∑
N

Xi

]
(11)

The components of these vectors are obviously correlated and represent the distances between points

associated to the life time of order k, in such a way that the marginal PDFs of these components are

fk(t). As a consequence, a normalized histogram of Sk, noted nhist (Sk), yields an estimation of fk(t),

and the behavior of this PDF estimator is well documented in standard books of statistics.

Instead of estimating the P PDFs appearing in (10) when it contains only P terms, we shall introduce a

procedure using only one histogram. For this, let Y be the (1×N P ) row vector defined by concatenation
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8 COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION

of the P vectors Sk defined by (12) or

Y = [S1,S2, . . . ,SP ]. (12)

In order to estimate the coincidence function by an approximation of (10) with P terms, we shall

use various forms of histograms of RVs. Let us then briefly recall the principle of the PDF estimation

with normalized histograms used in the following. Consider a random vector X with N non-negative

components. A particular realization of this random vector yields a sequence of N non-negative numbers

xi which are the input signal of an histogram analysis. For this, we introduce an arbitrary number a such

all the xi satisfy xi < a, which is always possible since the number N of xis is finite. This allows us

to introduce the interval analysis [0, a] which is the range of possible values of the present observation

of X. This interval is divided in m adjacent and non-overlapping segments (sometimes called bins) of

equal size s, which yields m = a/s. We then obtain a partition of [0, a] in m adjacent segments. The

function of the histogram is to yield the numbers nX,si of components of X belonging to each segment

si of the partition. This yields a set of m numbers called histogram of X and noted hist[X, a, s, {nX,si}],

or simply hist[X, a, s], when no confusion is possible. The corresponding normalized histogram noted

nhist is defined by

nhist[X, a, s, {nX,si}] =
1

N
hist[X, a, s, {nsX,i}], (13)

in such a way that the sum of its elements nX,si is 1. It is well documented in statistics that, when the

RVs Xi, components of X, have the same continuous PDF p(x), the value of nX,si is an estimation

of the integral of p(x) on the segment si. As a result the normalized histogram yields an estimation of

the continuous PDF approximated by a sequence of m numbers (discrete approximation by sampling).

The performances of this estimator are well known and not summarized here. It is of greater interest to

investigate the properties of the normalized histogram of a vector such Y defined by (12), and result of

the concatenation of P other vectors.

For this, let us introduce the concept of sum of histograms. Consider two 1×N row random vectors

V and W and let U be the 1 × 2N vector [V,W] obtained by their concatenation. A realization of

these vectors analyzed with two corresponding histograms defined by (a, s) yield the numbers nV,si and

nW,si for the bin si. It is clear that an histogram with the same parameters (a, s) of the 1× 2N vector

U with the same data yields the numbers nU,si = nV,si +nW,si . This operation called sum of histograms

is symbolized by the relation

hist[U, a, s, {nU,si}] = hist[V, a, s, {nV,si}] + hist[W, a, s, {nW,si}]. (14)
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The same procedure can be introduced in order to define the product of an histogram by a real positive

number. The expression can obviously extend to (12), which becomes

hist[Y] =

P∑
i=1

hist[Si], (15)

where all the histograms have the same parameters (a, s). The normalized histogram of (Y) is obtained

by division by NP and noting that the division by N in the rhs of this equation yields the normalized

histograms of the Si we get

nhist[Y] =
1

NP

P∑
1

hist[Si] =
1

P

P∑
1

1

N
hist[Si] =

1

P

P∑
1

nhist[Si]. (16)

Each member of the last sum is an estimation by histogram of the PDFs appearing in (10), in such a

way that the corresponding estimation of the CF deduced from (10) can be written

ĉ(t) = µ P nhist(Y). (17)

This estimation procedure using one histogram instead of P in the use of (6) is much less time

consuming than the one with calculating P distinct histograms.

As indicated just before, the data used in the histograms are not independent. But as the behavior of

an histogram is described by the law of large numbers, it is well known that the validity of this law does

not require the statistical independence of the data analyzed.

The first and simplest example corresponds to the case of a Poisson PP. Assuming that its density µ

is 1, the PDF of the distance between successive points has a one-sided PDF, or f(t) = u(t) exp(−t),

where u(.) is the unit causal step function. Furthermore we have seen above that the coincidence function

is constant and equal to µ2 = 1. It is especially easy to generate positive exponential RVs by computer

simulation and in the results appearing in Fig. 1 the number N of samples of these RVs is 107 and the

value of P , number of terms in the truncated series (10), is P = 10. The parameters of the histogram

are a = 16 and s = 0.1. In the Fig. 1 we present an estimation of the PDF (points) of these data and

of the corresponding CF (continuous curve). The results are presented in semi-logarithmic coordinates.

The continuous curves present the theoretical values of the PDF and of the CF calculated with P = 10.

The points are the results of the normalized histograms measuring these quantities.

This figure leads to the following comments. At first we verify that the PDF of the lifetime is perfectly

estimated. A small lack of precision appears for t > 9 where the PDF if of order of 10−4. This is obviously

due to the small number of samples having such values. A better precision in this domain could be easily

obtained by increasing the number of samples analyzed with the price of a greater computer time. On

the other hand we verify that, as expected by the theory, c(t) = 1, at least for t < 5. This means that
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10 COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION

for an exponential distribution of mean value equal to 1, the approximation of the series (10) is perfectly

valid for t ≤ 5. This fact is uniquely due to the approximation of (10) by 10 terms. We have verified

that increasing P in our experiments yields an increase of the time domain of validity of the estimation

of the CF. Finally, even if this appears only partially in the figure, we have verified that our simplified

algorithm introduces negligible errors in the evaluation of the series (10) limited to a sum of 10 terms.

Indeed, even to values of t of order of 20, the points of the histograms remain perfectly on the theoretical

curve of the sum of the first P of (10) which, as expected, tends rapidly to 0.

We shall now present similar results in the case of another PP. Points processes for which the

coincidence function can be expressed explicitly are rather rare. This is however the case of Erlang

(2) PPs. Such PPs can be constructed from Poisson processes by thinning regularly one point over two.

More precisely let PP be a stationary Poisson PP of density λ. Its random points are denoted Tn,

n integer. By a regular thinning procedure we associate a sequence of random points Θk defined by

Θk = T2k. This new sequence of points is also a stationary PP with density µ = λ/2. This PP is called

an Erlang (2) PP PE , and by an obvious generalization we can construct Erlang (n) PPs of density λ/n.

It is very easy to express the PDF of the distance between successive points of an Erlang (2) PP because

these distances are simply the sum of two IID random variables with an exponential distribution. The

result is

f(t) = 4µ2t exp(−2µt), (18)

where µ is the density of PE . The calculation of the CF is a bit more complicated and yields

c(t) = µ2[1− exp(−4µ|t|)]. (19)

At this step note that the FT of this expression is clearly not a positive function. This a clear evidence

that, as indicated previously, the coincidence function is not a covariance function.

We can now make the same computer experiments as those presented previously for Poisson PPs. The

parameters of the experiments are exactly the same: µ = 1, P = 10, N = 107, and the results appear

in Fig. 2 where theoretical and experimental values of the PDF and of the CF are presented. The PDF

is accurately estimated using normalized histograms. It is the same for the CF, but only for t < 5.

Measurements for greater values could require more than 10 terms in the approximation of the series

(10) by a finite sum. The only difference from the case of Poisson PP is that the mathematical expression

of the sum of the first 10 terms of the series (10) is rather complicated in such a way that we cannot

verify in this case if for t > 5 the experimental points are located on the theoretical curve for all values

of t, as it was verified for Poisson PP.
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PICINBONO: COINCIDENCE FUNCTIONS AND BARTLETT SPECTRA OF POINT PROCESSES 11

The last computer experiment is realized with a renewal PP defined by an uniform distribution f(t)

of its lifetime. Assuming a density µ = 1 yields f(t) = 1/2 for 0 ≤ t ≤ 2 and zero otherwise. In this

case the explicit expression of the CF is rather complicated even if it is always possible to calculate,

if necessary, the multiple convolution of any order of a rectangular function. Because of this lack of

simple theoretical result we slightly modified the parameters of the experiment. Instead of P = 10 the

value P = 14 was chosen in order to extend the domain of validity of the measurement. Since this

modification causes a significant increase of the computer time the number of samples analyzed was

reduced to N = 105.

The results appear in Fig. 3 in the same form as in the previous figures. The measurement of the PDF

is quite correct and the experimental points are exactly on the rectangular curve of the distribution. For

the coincidence function we observe the advantage of the increase of the number of terms P for the

approximation of the series (10). The asymptotic value c(t) = 1 is valid in the interval [4, 8] for t and

there is a beginning of decrease in the neighborhood of 8. This confirms the validity of our simplified

algorithm of measurement of the CF. Finally for t < 2 we observe the dominance of the almost linear

increasing of c(t) due to the convolution of a rectangular function yielding a triangular function f2(t).

IV. EXPERIMENTS WITH THE BARTLETT SPECTRUM

The Bartlett spectrum (BS) cannot easily be measured. It appears however as an important part of

numerous physical experiments. The results of these experiments can be considered as an indirect approach

of the BS. This is especially the case for the shot noise of PPs and we shall begin by a survey of the

principal results concerning this signal and used in what follows.

The shot noise is the signal obtained at the output of a linear filter when the input are random impulses

arriving at the time instants Ti of a PP P . This output can the written as (see p. 321 of Picinbono, 1993)

X(t) =
∑
i

h(t− Ti) =

∫
h(t− θ)dN(θ), (20)

where h(t) is the impulse response (IR) defining the filter and the dN(θ)s are the differential increments

introduced in Section II.

It is easy to deduce from the previous relation that the power spectrum ΓX(ν) of X(t) can be expressed

from the BS of P by the relation

ΓX(ν) = |H(ν)|2B(ν), (21)

where H(ν) is the frequency response (FR) of the filter, FT of h(t). Since this expression is valid for

any filter, that is for any function H(ν), and since ΓX(ν) cannot take negative values, as power spectrum
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of a signal, then this property is also valid for the BS, as indicated previously. It is the simplest proof of

the fact that B(ν) ≥ 0.

Another consequence of (21) is that the measurement of the power spectrum of the shot noise with

a filter of known FR is a way to reach the BS. This procedure is well adapted to filters obtained by

electronic circuits and for example the fact that the BS of a Poisson PP is equal to its density µ is

a well documented result appearing already in the old papers (Blanc-Lapierre, 1945) and (Rice, 1944)

and widely used in Signal Processing problems. It is however difficult to use this method in computer

experiments because the generation of a shot noise is in general quite difficult when the input PP is

generated by a sequence of lifetimes, as in our previous experiments. It is then necessary to overcome

this inconvenience by another procedure.

Our aim is then not to measure exactly the BS but to verify that some measurable first and second

order properties of the output X(t) depending on the BS correspond to its theoretical values obtained by

a particular BS. For this purpose we start from the fact that there is, however, one shot noise that can be

easily simulated in computer experiments. It is the case of the counting shot noise. Consider the linear

filter defined by the IR h(t) equal to 1 for 0 ≤ t ≤ T and to 0 otherwise. It is clear that the signal X(t)

defined by (20) is then the number N(t) of points of P belonging to the interval [t− T, t]. It is obvious

that N(t) obtained by this procedure corresponds to a relaxed counting as discussed in (Picinbono, 2013).

This means that the time instant t− T opening the counting interval is not necessarily a point Ti of P .

If, on the other hand, we consider only the values of N(t) at the times Ti + T , which means that the

counting interval begins at the time Ti that is a point of P , we obtain a triggered counting that is not

considered in the following.

The difference between the two procedures is essential in the case of renewal PPs. Indeed in the second

case the intervals between successive points of the PP are IID random variables, while in the first case the

first interval has not the same distribution as the other ones, which changes the probability distribution

of the registered counts (for this point see (Picinbono, 2013).

Applying to this signal N(t) the classical expressions of the mean and variance at the output of a

linear filter we obtain the mean mN = µH(0) = µT , where µ is the density of P and the variance

vN = var[N(t)] =

∫ ∞
−∞
|H(ν)|2B(ν)dν. (22)

For the counting filter this yields

vN = 4

∫ ∞
−∞

[
sin(ωT/2)

ω

]2
B(ν)dν, (23)

with ω = 2πν.
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Let us now apply these expressions to some specific cases. The one of the Poisson PPs is obvious.

Indeed, since the BS is constant and equal to µ, the previous equations yield mN = vN = µT , relations

well known for a Poisson distribution.

The case of the Erlang (2) PP is more interesting because all its statistical properties can be expressed

in closed form from the previous equations. Since the CF is given by (19), its Fourier transform can be

inserted in (23) and the BS takes then the form

BE(ν) = µ

[
1− 8µ2

ω2 + 16µ2

]
, ω = 2πν. (24)

Finally, while the CF of the renewal process with a lifetime PDF equal to 1/2 in the interval [0, 2] and

zero otherwise (uniform distribution) represented in Fig. 3 cannot easily be written in closed form, its

BS can be obtained by simple algebra from (9) and the result is

BU (ν) = µ

[
1 + 2

−4(sin4(ω) + sin(2ω)[2ω − sin(2ω)]

4(sin4(ω)) + [2ω − sin(2ω)]2

]
, ω = 2πν. (25)

These Bartlett spectra calculated for µ = 1 are represented in Fig. 4 for positive values of the frequency

ν, which is sufficient since any BS is a symmetric function of ν. As expected, these spectra tend to the

asymptotic value µ = 1 called the Poisson component of the BS. But the figure shows clearly that their

structure are quite different and for renewal PPs with uniform distribution the corresponding BS presents

damped oscillations of frequencies 1/2. There are due to the terms sin(2ω) apearing in the numerator of

(25).

Inserting these relations in (23) yields the variance of relaxed counting in an interval of duration T

called below TVBS, for theoretical variance with Bartlett spectrum.

In the case of Erlang (2) PP the probabilities pn for obtaining n points in the same interval can also

be obtained easily, which implies that we can deduce (see Picinbono, 2013) the corresponding variance

denoted TVC for theoretical variance of counting. Finally, using an algorithm described in (Picinbono,

2013) and allowing the measurement of the probabilities pn from the distances between successive points

observed experimentally, we can deduce a variance called EVC for experimental variance of counting from

simulated PPs. The experience is realized with an Erlang (2) PP of density µ = 1, as in the experiments

of the previous section. The results are displayed in Table 1 for various values of the counting interval

T appearing in (23). In this table T is this counting interval, Tm is the theoretical value of the mean

of the number of points in a time interval of duration T , TVBS is the theoretical value of the variance

calculated from the BS by using (22) and (23), TVC is the same quantity calculated from the counting

probabilities pn, Em is the experimental value of the mean of points and EVC the experimental variance

measured from the random number of points detected in the observation interval of the filter.
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It is clear that the results appearing in the second column of the table corresponding to theoretical mean

values does not yield significant information since the mean value of relaxed points of a PP of density µ

in an interval T is µT . The comparison between columns TVBS and TVC confirms almost perfectly that

the two theoretical procedures yield the same result. Finally the statistical experience realized with 107

samples of a simulated Erlang (2) PP and measuring the mean and variance of the relaxed number of

points of this process in an interval of duration T yield results of the last two columns. They agree quite

well with those calculated theoretically. This justifies the validity of the expression of the BS inserted in

the calculation of the variance of the counting shot noise in terms of the Bartlett spectrum.

TABLE 1. MEAN AND VARIANCE OF COUNTING

T Tm TVBS TVC Em EVC

1 1 0.6227 0.6227 0.9999 0.6225

2 2.0000 1.1250 1.1250 2.0003 1.1249

3 3 1.6250 1.6251 3.0000 1.6246

4 4.0000 2.1250 2.1250 4.0006 2.1248

5 5.0000 2.6250 2.6250 5.0006 2.6253

6 6.0000 3.1250 3.1251 6.0004 3.1251

10 10.0000 5.1250 5.1251 9.9997 5.1247

The same kind of results of experiments on simulated data can be obtained with renewal PPs with

lifetime of points described by an uniform distribution in the interval [0, 2] which yields a mean value

equal to 1. The corresponding BS appears in Fig. 4, curve 2.

There is however a difference from the Erlang (2) case because, as indicated above, for uniform

distribution it is very difficult to obtain in closed form the mathematical expression of the probabilities

pn of the relaxed counting. While the theoretical mean is still given by the simple expression µT , the

theoretical variance however cannot be obtained in closed form. This leads to the fact that the column 4

of the Table 1 disappears in Table 2 presenting results for renewal PPS with uniform lifetime.

TABLE 2. MEAN AND VARIANCE OF COUNTING WITH UNIFORM DISTRIBUTION

T Tm EM TVBS EVC

1 1 0.9991 0.5949 0.5949

2 2 2.0001 0.8732 0.8733

3 3 3.0004 1.2243 1.2242

4 4 4.0003 1.5564 1.5566

5 5 4.9985 1.8888 1.8887

6 6 5.9991 2.2230 2.2226

10 10 10.0005 3.5672 3.5679
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But the general conclusions notes with Table 1 remain valid with Table 2 : Even if the structure of

the Bartlett spectra of the two process analyzed appearing in Fig. 4 are quite different, the measurements

of the variances of the number of points in various intervals of different duration yields results in quite

good agreement with the values of these variances calculated from the mathematical expressions of these

spectra given by using (22) and (23). This is the main result of this analysis.

V. CONCLUSION

The purpose of this paper was to investigate some methods for estimating second order properties

of point processes (PP) when these processes are obtained from a sequence of numbers equal to the

time interval between successive points. In this case, the methods used by the physicists, for example in

nuclear physics or in statistical optics, cannot be used. Our study was essentially devoted to the problems

of coincidence functions (CF) estimation in the time domain, and Bartlett spectra (BS) measurements in

the frequency domain. The starting point is a relation between the CF and the probability density functions

(PDF) fn(t) of lifetimes of any order, which are the random variables equal to the time intervals between

points Ti of the of the PP and the nth points of it posterior to Ti. This relation was considered as without

possible application because it uses a series of an infinite number of PDFs which must be estimated

uniquely from the observation of a realization of the PP. The basic idea of our method was first, to

approximate the series by a sum of a finite number P of elements, but especially to process the data

in such a way that, instead of using P histograms for the estimation of the PDFs, only one is used

and yields directly the CF. This procedure strongly reduces the duration of the computer calculations.

Since there exists some PPs for which the mathematical expression of the CF is known, a computer

simulation of the lifetime of some of then was realized in order to verify the correct behavior of the

CF estimation. It appears that measured and calculated values of the CF coincide with a great degree of

precision. The method was also applied in cases where no mathematical expression of the CF is known.

The problem of the Bartlett spectrum is rather different. Indeed, while its mathematical definition is

after numerous attempts a well established result, its direct estimation or measurement remains almost

impossible. The only way to verify experimentally the theoretical results is to use an indirect way, and

especially to analyze the second order statistical properties of the shot noise of a PP where the BS plays

a fundamental role. It is what was discussed in the last section of the paper, where the chosen shot noise

used is simply the counting of the number of points of a PP in an time interval of given duration. By using

an appropriate algorithm calculating the number of points in arbitrary intervals from the time intervals
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between successive points of various PPs with different Bartlett spectra have shown that estimated and

calculated variances were quite similar.
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Fig. 1. Poisson Process : PDF and CF. Continuous curves : Theory ; Points : experiments.
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Fig. 2. Erlang (2) Process : PDF and CF. Continuous curves : Theory ; Points : experiments.
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Fig. 3. Uniform Process : PDF and CF. Continuous curves : Theory ; Points : experiments.
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Fig. 4. Bartlett spectra for Erlang (2) process [1] and Uniform process [2].
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