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PARAMETER ESTIMATION IN SPARSE INVERSE PROBLEMS USING
BERNOULLI-GAUSSIAN PRIOR

Pierre Barbault, Matthieu Kowalski, Charles Soussen

L2S, University Paris-Saclay, CNRS, CentraleSupélec

ABSTRACT

Sparse coding is now one of the state-of-art approaches for solving
inverse problems. In combination with (Fast) Iterative Shrinkage
Thresholding Algorithm (ISTA), among other algorithms, one can
efficiently get a nice estimator of the sought sparse signal. However,
the major drawback of these methods is the tuning of the so-called
hyperparameter. In this paper, we first provide an Expectation-
Maximization (EM) algorithm to estimate the parameters of a
Bernoulli-Gaussian model for denoising a sparse signal corrupted
by a white Gaussian noise. Then, building on the Expectation-
Maximization interpretation of ISTA, we provide a simple iterative
algorithm to blindly estimate all the model parameters in the linear
inverse problem context, including the hyperparameter involved in
the popular ¢y regularized minimization. Moreover, the algorithm
directly yields an estimator of the sparse signal.

Index Terms— Sparse coding, Inverse Problem, ISTA, Bernoulli-
Gaussian model

1. INTRODUCTION

Sparse coding is now one of the state-of-the-art approaches for linear
inverse problems [1} 2] of the form

y=Hx+e 1)

where y € R is the observed/measured signal, x € R™x is the
original signal, H € R™y*"x ig a linear operator, and e € R™Y is
some noise supposed to be white and Gaussian. Usually, the signal x
is supposed to admit a sparse representation in a chosen, or learned,
dictionary of atoms [3| |4]. Without loss of generality, we suppose
here that the signal x is sparse.

A popular approach to estimate sparse signals relies on the min-
imization of

min%HY—HxHQ + AR(x) )

where || . || refers to the 2 norm, R is a regularization term enforc-
ing sparsity, such as ¢; or ¢y (quasi)-norms, and A > 0 is a fixed
hyperparameter. Solving can be efficiently done using proxi-
mal descent methods [5] and more particularly the (Fast) Iterative
Shrinkage/Thresholding (FISTA) [6] and Iterative Hard Threshold-
ing (IHT) [[7] algorithms for the ¢; and ¢o problems, respectively.
One of the main drawbacks of the optimization approach (2)),
is the tuning of the hyperparameter A. In the pure denoising case,
one can use the Stein Unbiased Risk Estimator (SURE) for choosing
the A with the ¢; regularization [8]. In [9], the authors proposed
the Generalized-SURE (GSURE) to extend the SURE approach to
inverse problems solving with ¢; regularization. For the ¢y problem,
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the SURE approach no longer applies, and the SCORE approach has
been proposed [10] in the denoising case.

An alternative is the Bayesian framework, where sparsity is
modeled through a suitable prior. A popular choice is the Bernoulli-
Gaussian (BG) model [11], which is strongly related to the ¢y reg-
ularized problem through the maximum a posteriori estimator [12].
In [11]], the authors proposed a stochastic-EM procedure to estimate
the sparse solution of a deconvolution problem. Indeed, a classical
EM procedure appears intractable because of the combinatorial as-
pect due to the BG prior. Following the EM approach developed
in [13] which relies on an additional latent variable, [14]] proposed
an iterative procedure to estimate the parameters of a BG model
when the matrix H is a union of unitary dictionaries. However, with
the chosen prior on the hyperparameters, this approach leads to a
non-convergent estimate even in the denoising case as shown in [[15].
Moreover, preliminary experiments show that the method is not ro-
bust for the general inverse problem. Finally, MCMC approaches
for the BG sparse model do not scale well in practice [16] although
recent efforts have been carried out to improve their efficiency [17].

This article deals with the unsupervised estimation of the BG pa-
rameters. In the denoising case, we first develop an EM algorithm to
estimate all the parameters of the Bernoulli model infsection 2] Then,
in[section 3] we revisit the approach [13], using an additional latent
variable, to extend the EM estimation in the linear inverse problem
context. Furthermore, we propose an iterative algorithm similar to
ISTA that estimates the model parameters and provides an estima-
tion of the sparse signal x. These approaches are evaluated on both
simulated and real data in

2. BG PRIOR AND DENOISING
We first study the denoising case, i.e. H = Iy with N = N, = Nx:
y=x+e. 3)

We assume a BG prior on x denoted by x ~ BN (p, 0, 621y ). That
is, for each coordinate n of x, we have

1

2 2
Tn|p,0x) = (1 —p)d(xn) + p—=e€ 272 4
p(@alp, 0x) = (1 = p)d(zn) P el )
where § stands for the Dirac delta function. The parameter p € (0, 1)
is directly related to the level of sparsity, i.e., the rate of non-zero
components in vector x — the smaller, the sparser — while parameter
o2 is related to the range of the nonzero components. The noise is

assumed to be white and Gaussian:
e~ N(0,021y) . ©)

The goal is to estimate the model parameters § = (o2, p, o2) by
maximizing the likelihood of data y, in an empirical Bayes fashion.



Using x as a hidden variable, we can derive an EM algorithm:

pt+1) — argéninEx‘yye(t) [L(y,x]0)] . (6)

where L(y,x|0) = —logp(y,x|#). The following proposition
summarizes the E-step of the algorithm. For the sake of concise-
(—p)* )

202

ness, we denote by N, (u,0%) = \/;7 exp (—

Proposition 2.1 (E-step for denoising). Consider the BG denoising
model @)-@) and denote by 09 = {(52), p | (62) )} the esti-
mated parameters at iteration t. Furthermore, define

) _ PN, (0, (02) D + (02)™)
" PN, (0,(02)® + (62)1) + (1 = pM)Ny, (0, (02)®)

with

® _ (o) W _ (o2) V(o)™
T+ YT 0D+ ()

Then, the expectation term within (6) reads:

O]

N
poz) Z o)
n=1
(®)
where C' is some constant which does not depend on 0.

Sketch of proof. Thanks to the componentwise independence of the
prior and likelihood functions, the expectation reduces to a sum of
coordinate-wise operations:

N
=Y By yno® [L(yn, @al0)].

n=1

Eyy.00 [£(y,x]0)]

The coordinate neg-log-likelihood is further developed into:

2

n — Tn, 1
Llyn, zalp) = L2k

552 log p(zn|0) + C

log[oz] —

Let us now calculate the law of xn|yn, M. To do so, we apply
Bayes’ rule with the prior distribution {@). Up to a few rearrange-
ments (to isolate the factors depending on x,,), we get:

: Ny, (0, (02)™)
PR )

(t)) Ny, (0, (Ui)(i) + (C’g)(t))
p(yal0®)

given by (7), which rereads:
o) 8(n) + &1 N (1, 7).

P(@nlyn, 0) = (1 -

+ PN, (u(”y

with ¥ and v®
P(@nlyn, 0) = (1 -

It follows that

E, o) (0] = 1 yngr? ©
E, 0w [#2] = (@) +v0) 6l (0

Finally, using that

2
{ log p(xn|zn # 0,0) = Lloglo?] + 52 — loglp] + C
—logp(zn = 0|0) = —log[1 — p]

one gets

) 50+

—log(1—-p)+C. (D

1-

Eznlyn,79(t) [~ log p(2|0)] = log (
WO%n)* +v

202 1

To complete the EM algorithm, it remains to minimize the neg-
ative log-likelihood. By setting the derivative to zero w.r.t. 6 of (§),
we get a closed-form expression of the EM summarized now.

Proposition 2.2 (M-step for denoising). Consider the BG denoising
model @—@) Then, the EM solution 0D at iteration t + 1is
given by

(t>)

N
D ) @) _ 0, (B ®
NZQSH 7( ) +N(t+1) YnPn
n=1 n=1
N N
2 1 1 2 2,U«(t) +1 1
(UE)(H ) N Zy” _ N (t) +p(t )( )(t+ )
n=1 n=1

Once all the 0 parameters are estimated using the EM procedure,
one can choose any estimator for x. In the following, we will be ex-
plicitly interested in the two estimates studied in [18] for denoising,
that is, the so-called marginal MAP (MMAP) estimator and the pos-
terior mean estimate. The MMAP estimator consists of estimating
first the support of the sparse signal by marginalizing out the nonzero
coefficients of x. It reads [[18]:

02 .
gMMAP _ ZTiozln if [y | > AMMAP -
0 otherwise
with
2 2 1_ 2
AMMAP _ o2 0¢ J;"z log ( P+ Ug) . (13
U(L' p Je

The posterior mean estimator is given by Eq.(TT). One can notice
that this is generally a non-sparse signal.

3. EXTENSION TO INVERSE PROBLEMS

As stressed in [[11], the EM approach with BG prior is intractable
for general inverse problems. Following Figueiredo and Nowak’s
approach [13], we introduce a latent variable z € R™x such that

y=Hz+n,z=x+b (14)

where b ~ N(0,071x,) and n ~ N(0,021y, — o HH") are
2

independent random vectors, with ag < m
degenerate distribution. In [13]], z was used as the hidden variable in
an EM algorithm, which turns on to the popular ISTA, to estimate the
sparse signal x: the E-step reduces to the gradient descent on the £

data-fidelity term while the M-step reduces to the proximal operator

to ensure a non-



associated with the regularizer. Here, we use z as a latent variable to
be estimated (as in Sparse Bayesian Learning [[19]) and consider x
as the hidden variable that is marginalized out. Let @ < 1 be a fixed

2
parameter such that = and let @ = (07, 02,p). Using

IIHHT I’
x as the hidden Varlable the EM approach reads

ngun Ex‘y 2(1) o() { log p(y, x, 2|0, ‘76)}

o2 IHHT]
ot =
«

(o2)") (15)

Since p(y, x,z|0) = p(y|z, 6)p(z, x|6), the latter reads:

min { ~logp(ylz, (02)")) + min(E, 0 o0 £(2,x16)) |

where (02)® = “Haﬂ(af)“) and mein(Ex‘z(t)’@(t)C(z,x|9)) is

the denoising problem in z® treated in the previous Then,
denoting by 9*V the current estimate of 0, the minimization step
with respect to z becomes

min B, g0 {~logp(y, x,2/0")} = (16)
+
min — log p(y|z, o2 ¢ Eojat) 6 {

where C' is some constant which does not depend on z. Let
x® = =E, |, o) {x} be the posterior mean estimate of the BG

denoising problem with respect to z given by (TT). Using the
linearity of the expectation, the minimization with respect to z reads

Tﬁ(t)} (17

2(t+1))

1
mm—logp(y|z o +W{HZ”2_2Z
207

. 2(t+1) 1 (®)
= min —log p(y|z, o Wrm{ﬂz—x [ }
— mln—log {p y\z 0_2( +1 )) ( |&(t)79(t+1))} (18)

. ~ t+1
= min —log p(aly, X", g2 gty (19)

p(zly, %, 02,00+ being Gaussian, the minimizer, denoted by
2T reads [20]
2D =3 4 ||HHTH g Y (v~ HR) 20)

Algorithm[T]summarizes this EM procedure.

Algorithm 1: EM algorithm for Inverse Problem with BG
prior

Result: Estimation of the model parameters.

t=0,2z"% =0,xY =0;
while ¢ < N; do
7t — x(®) T ).
=x" 4+ HHHT\IH y — Hx ),
Estimate 61 using prop withy = z®
x(tHD = E, 41 ge+n {X}s
t=t+1;

end

1 2

The main purpose of Algorithm |I| is to provide an esumatlon
of the parameters of the model, that is, the parameters p and o2

of the BG prior as well as the variance o2 = agw of the
noise. It turns out that by construction, the algorithm provides an
estimate for x, which is the posterior mean of the denoising problem
for z. Furthermore, one can also compute the threshold associated
with the MMAP estimator in the denoising step related to z™®, that
is AMMAP a5 gjven in (13). The following numerical experiments
show that these values can be used to tune the hyperparameter A in
the classical £op minimization.

4. NUMERICAL EXPERIMENTS

Evaluation is carried out for denoising and deconvolution of signals
and images. To this aim, we simulate BG sparse signals as fol-
lows. For an arbitrary sparsity level p € (0,1), we set 02 = 1,
and o2 is chosen according to the desired input Signal-to-Noise Ra-
tio (SNR = 10 logy, (%
of a vector y = Hx + e of size 40000. We also tested our ap-
proach on the fishing boat test image of size 512 x 512. We used
a Daubechies-4 orthogonal wavelet transform to get sparse coeffi-
cients. We initialize the parameters to be estimated by EM using the
method of moments, and the sparse coefficients by zeros. We have
fixed @« = 1. The comparisons are mainly based on the output SNR

_ l<[|2
(oSNR = 10 log, 3

l[x—x]?

). We generate 100 realizations

), where X is the current estimate of

x). The experiments are run with Python on a laptop with an Intel
Core i7 CPU at 1.8 GHz with 16 GB of RAM.

4.1. Denoising

Fig.[T]illustrates the ability of the EM procedure, given by Prop.[2.2]
to recover the parameters of simulated signals in the case of a denois-
ing problem. We display the relative error on a given parameters, i.e.
%, denoting by 6; the estimated value.

Ip—plip T — Oel/0e

0.0
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|
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Fig. 1. Recovery of the parameters on noisy simulated signals.

Fig. 2] deals with the denoising problem of simulated signals
with p = 0.01. The proposed approach is compared with denois-
ing by hard thresholding, i.e. the set of ¢y solutions obtained for a
wide range of hyperparameter ), see (2). The parameter estimates
provided by our procedure turn out to be very accurate. In turn, our
unsupervised approach yields a posterior mean estimate that reaches
the best oSNR.

We can see in Fig. Bthat for image denoising, the proposed unsu-
pervised posterior-mean estimator remains very competitive. Here,
the best oSNR is reached by the hard-thresholding algorithm with
specific values of A.
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Fig. 2. Comparison of the EM algorithm for denoising simulated BG
sparse signal (star shape point) and hard thresholding results (plain
curves, showing results for various \) for three iSNR.

SNR(dB)

Fig. 3. Comparison of the EM algorithm for image denoising and
hard thresholding for denoising an image.

4.2. Deconvolution

In the following experiments, the operator H corresponds to a con-
volution operator (which behaves like a low-pass filter) combined
to the orthogonal wavelet transform. The normalized convolution
kernel is K (pz, py) = :;j(?'; fpyy+£;N ,n) Ny (0,n) dzdy,
where 7 controls the width of the kernel. In th1s experiment, BG
signals are drawn with p = 0.01. We evaluated the ability of the
algorithm to recover the parameters for various 7. Fig. ] shows the
relative error for each parameters. We can stress that the parameters
are recovered precisely whenever 7 < 0.3.
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Fig. 4. Recovery of the parameters on blurry simulated signals.

Fig. |5| compares the proposed approach with £y minimization,
performed using the IHT algorithm with warm restarts [21]. When

the kernel becomes wide, the oSNR given by the MMAP value of
) for the ¢y minimization outperforms the posterior-mean estimate.
The unsupervised value of A provided by our approach is closed to
the best possible 0SNR achieved by the £y minimization.

25

20

15

SNR(dB)

10

0.00 0.05 010 015 020 025 030 035 040
A

Fig. 5. Comparison of Alg. [I] for deconvolution of simulated BG
sparse signal and £o minimization,with a fixed iSNR = 10 dB.

For image deconvolution, the posterior-mean estimate provides
excellent empirical results for small kernels. Its performances col-
lapse for wide convolution kernels. However, the MMAP value of
) appears to be more robust. Using a redundant wavelet transform
could help improving the empirical results by providing sparser co-
efficients. Moreover, the proposed algorithm does not benefit from
warm-restarts contrary to the £p minimization.
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Fig. 6. Comparison of Alg.[I]for image deconvolution and ¢o mini-
mization for various 7, with a fixed iSNR = 10 dB.

5. CONCLUSION

We proposed fully unsupervised algorithms based on an EM proce-
dure to estimate the parameters of a BG prior. For denoising, we
have shown empirically that the estimation is excellent and robust.
The posterior-mean estimate reaches then the best possible empirical
oSNR as expected. For inverse problems, the EM approach relies
on an additional latent variable which reduces to an iterative algo-
rithm such as ISTA, where the previous denoising EM procedure
replaces the proximal step. In addition to a posterior-mean estimate,
which depends on the latent variable, we also provide a value for the
hyperparameter A used in the ¢y minimization. Future works will
study how our approach could exploit warm-start strategies to im-
prove the estimation of the parameters in difficult inverse problems.
We also plan to do a proper comparison with Bayesian approaches
such as [23]]. Results on inverse problems with images should
also benefit from a translation-invariant wavelet transform, which
produces sparser representations.
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