Deep Neural Network Feasibility Using Analog Spiking Neurons - CentraleSupélec Access content directly
Conference Papers Year :

Deep Neural Network Feasibility Using Analog Spiking Neurons

Abstract

Novel non-Von-Neumann solutions have raised based on artificial intelligence (AI) such as the neuromorphic spiking processors in either analog or digital domain. This paper proposes to study the deep neural network feasibility using ultra-low-power eNeuron. The trade-offs in terms of deep learning capabilities and energy efficiency are highlighted. A linear fit model is found in the region of high energy efficiency of neuromorphic components. Thus, deep learning and energy efficiency mutually exclusive if those neuromorphic components are used.
Fichier principal
Vignette du fichier
BW_SBCCI_Thomas_Soupizet_v1.pdf (333.23 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03689837 , version 1 (07-10-2022)

Identifiers

Cite

Thomas Soupizet, Zalfa Jouni, Joao Frischenbruder Sulzbach, A. Benlarbi-Delai, Pietro Maris Ferreira. Deep Neural Network Feasibility Using Analog Spiking Neurons. 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design (SBCCI), Aug 2022, Porto Alegre, Brazil. ⟨10.1109/SBCCI55532.2022.9893216⟩. ⟨hal-03689837⟩
98 View
51 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More