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Abstract—In this paper, we propose a novel way for power
amplifiers (PA) modeling using spiking neurons. The rate of
neurons firing spikes is a nonlinear function of its excitation
current. Taking the firing rate as the output and the excitation
current as the input of a one layer spiking neuron network,
we build up a PA behavioral model with low nonlinearity
order to mimic its strong nonlinearity. The results of modeling
two Doherty PA show that the proposed method can reach
better performance but with lower computational complexity
compared with traditional methods. This is the first time that the
nonlinearity property of spiking neurons are used for processing
such nonlinear signals. Future work is to develop a complete
system for the training of the spiking neural networks and to
explore the application of spiking neural networks on real-time
PA linearization.

Index Terms—Device modeling, memory effects, nonlinear
distortion, power amplifiers, spiking neurons

I. INTRODUCTION

As the third generation of neural network, the spiking neural
networks (SNN) have been recently found a promising solution
as they better mimic the biological behavior of the brain cortex
[1]. They have been developed for conventional computers and
digital signal processing circuits [2]. Recently some studies
on non-von-Neumann computing hardware provide solutions
to highly energy efficient SNN [3]-[5].

The SNN is usually considered as a comparable method to
the classical artificial neural networks (ANN) which is less
similar to the biological brain cortex, but is more developed
in the past decades on von Neuman hardware [6]. The SNN is
believed having over 100 times higher energy efficiency than
the ANN when implementing on a field-programmable gate
array (FPGA) [7]. However, the spiking neurons use can be
much more variant than just composing a similar network as
ANN, or even simply converting an ANN to an SNN [8]. The
spiking neurons are event-driven circuits, which allows much
more possibilities rather than conventional networks.

There have been different types of cortex neurons [9], such
as Fast spiking neurons (FS) which fire high-frequency tonic
spikes with relatively constant period, Low-threshold spiking
neurons (LTS) which fire tonic spikes with pronounced spike
frequency adaptation (decreasing) and rebound spikes due to
post-inhibitory effect, etc. A spiking neuron fires a spike train
when it is excited by a current. The rate of fired spikes fspike
varies as a nonlinear function of the value of the excitation

current I.,. Different types have different characteristics of
firing rate as studied in [10].

This nonlinear characteristic of spiking neurons can offer
a great practicality for nonlinear computing in information
processing, such as the modeling of power amplifiers (PA)
in modern telecommunication systems. The PA consumes
the majority of power and brings the majority of nonlinear
distortion in modern wireless communication systems [11].
Thus, developing a behavioral model of the PA is essential for
the research on high efficient PA design or PA linearization.
In some wideband PA linearization techniques such as [12], a
digital predistortion (DPD) is employed upstream of the PA,
which needs a PA model for DPD coefficients extraction. In
massive multi-input multi-output (MIMO) systems for 5G, the
linearization of the system with beam-forming needs to build
behavioral models for each PA of the antenna array [13].

A conventional PA model is based on Volterra series [?].
Some simplified versions have been proposed in past decades,
such as memory polynomial (MP) [14], generalized memory
polynomial (GMP) [15], dynamic-deviation-reduction (DDR)
model [16], and decomposed vector rotation (DVR) model
[17]. Block-oriented non linear (BONL) systems [18] have
also been studied. The PA distortion is composed of nonlin-
earity and memory effects [19]. In the Volterra based models,
the nonlinearity is modeled by polynomials while the memory
effects are modeled by filters.

In this paper, we use a spiking-neuron-based method to
model the nonlinerity in the PA model. We mathematically
analyze the nonlinear behaviors of different types of neurons
and of power amplifiers from perspective of polynomials.
The effectiveness of neuron-based PA model is validated with
measured data from two Doherty PAs.

This paper is organized as follows. Section II presents the
nonlinearity analysis of spiking neurons. The neuron-based PA
modeling is proposed in Sec. IIl. The simulation results are
given in Sec. IV. Finally, the conclusion is given in Sec. V.

II. NONLINEARITY OF SPIKING NEURONS
A. Model of neurons

The variations of biological current and membrane voltage
in neurons are generated by passing of Sodium (Na™) and
Potassium (K ™) ions. Some models have been proposed to
describe the procedure of a neuron firing spikes, such as Moris
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A system scheme of a neuron circuit with a counter.
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and Lecar (ML) model, Izhikevich model, and leaky integrate
and fire (LIF) model for easier realization in hardware. In
[5] and [10], the circuits of both FS and LTS neurons were
designed based on ML and LIF models.

The system of a neuron circuit can be schematically illus-
trated as Fig 1. The variation of membrane voltage V,,, as
a function of excitation current ., can be described by ML
model:
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where C), is the membrane capacitance, G¢, and G are
maximum conductances of channels for Ca and K ions
respectively, En, and Ex are Nernst potentials for Na and
K ions respectively, E is the leakage potential, mggs and
ngg are steady-state value of activation coefficients m and n
respectively, Vi, Vo, Vs, V4, and Ay are constants.

It can also be described by LIF model:
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where V is the threshold voltage to fire a spike, V. is the rest
voltage after firing a spike, a and b are constants. We can see
in these models that the differential equation of membrane
voltage V,,, shows its gradient is negatively proportional to
its own value, which means V,,, increases slowly when its
value is large. However, under the excitation by a current /.,
which is large enough, the gradient of V,, is kept positive.
The membrane voltage of a neuron keeps increasing till a
threshold voltage and then is abruptly reset to the rest voltage.
This procedure generates a spike. With the existence of I.,,
the neuron keeps on generating spike train with a frequency
related to the value of I.,. As illustrated in Fig 1, a counter is
connected to the neuron to render the spike frequency fopike-
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Normalized characteristics of 4 neurons.

B. Nonlinear behavior of spiking neurons

The output of the system in Fig 1, the spike frequency
fspike. increases nonlinearly along with the value of I.;.
In this section, we use polynomials to model the nonlinear
behavior of the spiking neurons designed in [5] and [10]. The
transfer function of a neuron can be expressed by polynomials
as:
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where G(-) represents the neuron function, J is the maximum
of nonlinearity orders.

We have acquired 4 datasets from the post-layout simula-
tions of neurons redesigned as presented in [5] and [10]:

1) Neuron 1: FS neuron with LIF model designed in [5].

2) Neuron 2: FS neuron with ML model designed in [5].

3) Neuron 3: FS neuron with ML model designed in [10].

4) Neuron 4: LTS neuron with ML model designed in [10].

The characteristics of Neuron 1-4 are illustrated in Fig 2. We
are only interested in the monotone increasing parts of these
curves for the PA nonlinearity behavioral modeling. Thus we
limit the current I, to truncated intervals for each neuron.
For better visualization, in Fig 3, the datasets of fsp;r. and
I, are offset and normalized between the interval [0,1]. We
can see that different types of neuron with different designs
have different characteristics but with similar trends. It is wise
to utilize these nonlinear response of neurons in nonlinear



TABLE I
MODELING PRECISION OF POLYNOMIALS FOR DIFFERENT NEURONS

Neuron # 1 2 3 4
J 11 11 11 11
NMSE (dB) -44.6 | -36.8 | -40.0 | -54.2

devices modeling. The effectiveness of polynomial modeling
is evaluated with normalized mean square error (NMSE) given
in Table I. The NMSE is calculated by:

N
anl |yest (n) — Ymeas (n)|2
N
> =1 |Ymeas(n)[?

where y.s; is the estimated data obtained by the model, and
Ymeas 1S the measured data.

NMSE; = 4

III. NEURON-BASED PA MODEL
A. The Model of PA

A conventional PA model based on memory polynomial [14]
can be expressed as:
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where z(n) and y(n) are PA input and output respectively, k
is the nonlinearity index, [ the memory index, and the cy; are
the complex coefficients.

As we can see in (5) that the nonlinearity of the PA is
represented by |z(n — I)|*. If we compare it with (3), we
can easily see that the neurons can help representing high
order nonlinearities in (5). Thus we propose a new model with
spiking neurons to generate the nonlinearities:
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In the case where we have 4 different types of neuron, we
propose a combination model of 4 neurons:
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where G;(+) represents the function of the i-th neuron.

In case where real-time processing is not demanded, the
data can be processed in low rate on neurons without parallel
polyphase structure as Fig. 4(a). Note that the neurons in
[5] and [10] fire spikes in order of KHz and the observation
window length 7" is in order of 1ms, we propose to process
the high-frequency data in parallel polyphase structure as
illustrated in Fig. 4(b), where ¢ is the sampling period of
original data x, P is in order of % Knowing that the power
consumption of a neuron is in order of hundreds of pico-
Watts, a dataset x sampled at several hundreds of MHz needs
P =5 10°. These neurons render a total consumption of several
uW, which is negligible compared to the power that the
proposed method can save from traditional multiplications on
digital circuits.
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Fig. 4. (a) Structure for off-line computation; (b) Parallel polyphase structure
for real-time data processing.

B. Model Identification

The identification is based on indirect learning architecture
(ILA). The model coefficients can be estimated by solving
a linear problem. For each band, we can express the post-
distortion using matrix notation for a block of N samples:

y=Ye (3

where y=[y(1),...,y(N)]", ¥ is the N x R matrix contain-
ing the basis functions as explained in (9), and R is the total
number of model coefficients.

The LS estimation of ¢ is found by

é=[ole ey (10)

which minimizes the cost function (4).

IV. TEST RESULTS
A. Test Devices

In this section, we validate our proposed neuron-based
model with datasets measured from two Doherty PAs. The PA
1 is a three-way Doherty PA with three LDMOS BLF7G22LS-
130 with a linear gain of 16 dB. Its peak output power
can reach 57 dBm (500 W). We use a 20 MHz LTE signal
as stimulus with peak-to-average power ratio (PAPR) equal
to 8 dB. Its baseband IQ signal is generated in the PC
Workstation. It is then up-converted to a carrier frequency
of 2.14 GHz by an Arbitrary Waveform Generator (AWG)
and is fed to a driver and the PA. The AM/AM & AM/PM
(Amplitude Modulation/Amplitude Modulation & Amplitude
Modulation/Phase Modulation) curves of this PA are illus-
trated in Fig 5. The PA 2 is a two-way Doherty PA using
CGHV27030S transistors. Its AM/AM & AM/PM curve is
depicted in Fig 6.

B. Exhaustive Test

To investigate the effectiveness of proposed neuron-based
model, we test all possible models under condition that
Ki; < 3, L < 4 in (7). The NMSE values are plotted as
red points in Fig. 7 and Fig. 8 as a function of number of
model coefficients R. The conventional MP models are also
tested for comparison. For the conventional MP, we first test
all models with L < 3, £ < 4 and mark their results with
cross symbol. We then test all conventional MP models with
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Fig. 6. AM/AM & AM/PM curve of Doherty PA 2.

K < 11, £ < 4 and mark the corresponding results with
squares. The NMSE value presents the accuracy of a model.
The complexity of a model is determined by the number of
its coefficients and the nonlinearity order according to [20].
It is desirable for a model to reach a low NMSE value with
few coefficients and low nonlinearity order. The Pareto front
of NMSE vs. number of coefficients represents the set of best
models regarding the tradeoff between the NMSE value and
the number of coefficients [21]. We can see that the proposed
neuron-based model has a much better Pareto front than the
conventional MP models. If we limit the nonlinearity order
of a conventional MP model to the same as the proposed
neuron-based model, the proposed neuron-based model has
advantage of 5dB on NMSE. If we unlimit the nonlinearity
order of the conventional MP, it can reach a similar level of
NMSE as the proposed neuron-based model, but its NMSE
is still 1 or 2 dB less when the number of coecfficients is
less than 20 for PA 1 and 15 for PA 2. This is because
the neurons that we used in this paper have taken place of
nonlinearities in order of 11 according to Table I. Thus we
can model a high nonlinear Doherty PA with very low order
in the proposed neuron-based model. We should also notice
that the nonlinearity order means numerous multiplications on
digital circuits, which is related to up to several milli-Watts
according to [11]. The power consumption brought by neurons
is then negligible. Thus, according to the way to estimate the
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Fig. 8. Exhaustive test of NMSE for modeling of PA 2.

power consumption with FLOPs (floating-point operations per
sample) in [20], the proposed model brings a reduction in order
of 10 times compared with conventional method.

To the best of authors’ knowledge, this is the first time that
emerging techniques of spiking neurons are applied for PA
nonlinearity modeling. The results show it is promising but
some further development is needed to refine this technique
on high frequency signal processing and real implementation.
A future perspective is the design of circuits to enable the
training of the spiking neural networks with some algorithms
such as in [22]-[24]

V. CONCLUSION

In this paper, we propose a neuron-based model for PA
modeling with lower complexity and power consumption. The
spiking neurons with strong nonlinear characteristics help to
reduce the nonlinearity order from conventional MP models,
which renders less multiplications in digital computation.
Furthermore, the power consumption of the spiking neurons
are as low as several hundreds of pico-Watts. The utilization
of new emerging techniques of spiking neurons on nonlinear
device modeling has been proven effective and promising
according to the validation with two different Doherty PAs.
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