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Abstract: Pole placement represents a classical method for controlling finite-dimensional linear time-
invariant systems, largely covered in the open literature. Basically, it consists of placing the poles of the
closed-loop system in some predetermined loci in the complex plane. This paper discusses some of the
extensions of this method to linear systems described by delay-differential equations. Among others, the
finite spectrum assignment (FSA), the continuous pole placement (CPP) and the partial pole placement
(PPP) approaches are presented and illustrated through some simple low-order dynamical systems.
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1. INTRODUCTION

In linear time-invariant (LTI) systems, one of the simplest ideas
to control the dynamical behavior of the closed-loop system
is to place the poles in some desirable loci in the complex
plane. Such a method is called pole placement (e.g., Astrom and
Murray (2009) and the references therein). Roughly speaking,
the pole placement’s main ingredients are (i) the perfect knowl-
edge of the state variables; (ii) some appropriate controllability
assumptions on the system, that is, the possibility to steer a
dynamical system from an arbitrary initial state to an arbitrary
final state via an apropos set of admissible control laws.

If the said method is easy to understand and to apply in
the control of finite-dimensional LTI systems, its extension
to systems described by delay-differential equations (DDEs)
seems to be more involved. More precisely, two issues need
to be addressed. First, the introduction of a suitable notion
of controllability for delay systems, and, second, the in-depth
comprehension of the location of the poles of the closed-loop
system in terms of the controller’s parameters.

The focus of this overview aims at the second topic and, as
indicated in the title, it covers more than one hundred years
of contributions in the area of the DDEs. For a good intro-
duction to the controllability notions in finite- and infinite-
dimensional systems also including the case of dynamical
systems represented by DDEs, we refer to Antoulas et al.
(2001). Finally, a deeper discussion of the existing methods (D-
decomposition, τ-decomposition) to characterize the stability
regions in the parameter-space can be found in Michiels and
Niculescu (2014), and the references therein.
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Agency (ANR) as part of the “Investissement d’Avenir” program, through the
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To the best of the authors’ knowledge, the first results on
the spectrum location of linear systems represented by DDEs
were published one century ago. In the late 1970s, the concept
of pole-placement emerged in control theory in the guise of
Finite spectrum assignment; Olbrot (1978); Manitius and Ol-
brot (1979), the upshot of which was to counterbalance the
effect of delay by a prediction of the state over a delay in-
terval, thereby downsizing the closed-loop system to a finite-
dimensional plant;

There is more to pole placement for delay systems than a
quasipolynomial interpolation problem. As a matter of fact,
in Ackermann (1972) N poles of the system are assigned to
(some) desired positions in the complex plane by N feedback
parameters in the same fashion as in the finite-dimensional case.
Nevertheless, in order to preclude the spillover effect, it is well-
known that such an interpolation is an efficient placement if,
and only if, the remaining spectral values of the closed-loop
system are located to the left of the rightmost of assigned poles;
that is, the assignment succeeds if the latter poles are dominant.
However, this feature is not ensured in general as remarked in
Vyhlidal et al. (2009); see also Ram et al. (2011).

More recently, building upon the effect of multiple roots on the
stability of DDEs, a novel analytical pole placement strategy
called multiplicity-induced-dominancy (MID) was devised in
Boussaada et al. (2019). In fact, quite recent works established
that a real root of maximal multiplicity is necessarily the dom-
inant root for some classes of time-delay systems; a property
we call generic multiplicity-induced-dominancy (GMID). The
property was hinted at in Pinney (1958) albeit illustrated by
simple low-order cases, with no endeavour to address the gen-
eral case. To the best of the authors’ knowledge, very few works
have tackled this issue in a systematic fashion until recently;
see Boussaada et al. (2016, 2019, 2018); Ramı́rez et al. (2016);



Mazanti et al. (2021a,b); Benarab et al. (2020); Mazanti et al.
(2020).

Henceforth, the paper is organized as follows. Section 2
presents existing pole placement paradigms. Next, each section
describes an existing pole placement paradigm where the main
idea as well as the advantages and the drawbacks of each are
discussed. Section 3 is devoted to the Finite Spectrum Assign-
ment. Section 4 presents the Algebraic Pole Placement. Section
5 describes the Continuous Pole Placement. Section 6 centers
on the recent Partial Pole Placement. Finally, we give in Section
7 several examples which illustrate the described methods.

Notations: We denote by R[s] the ring of polynomials in s over
R, R(s) is the quotient files of R[s], and R[s,z] denotes the
ring of 2-D (two-variable) polynomials in s and z over R. For
s ∈C, ℜ(s) and ℑ(s) designate the real and imaginary part of s.

2. OVERVIEW OF PIONEERING WORKS ON POLE
LOCATION AND POLE PLACEMENT

To the best of the authors’ knowledge, the first results devoted
to the spectrum location of dynamical systems described by
DDEs go back to the 1920s and are due to Pólya. In fact, in
Pólya (1920), the quasipolynomial entire functions have been
extensively studied and the asymptotic distribution of their ze-
ros has been explored by some elegant geometric approaches 1

which, unfortunately, have not been sufficiently exploited and
extended to higher-order equations. Rather than the geometric
investigation, in Langer (1929), an analytic treatment of the lo-
cation of the roots of some low-order transcendental equations
is given in a more precise way. Indeed, under some conditions,
the roots are located in arbitrarily small sectors, and in each
of these sectors the roots are additionally confined in a finite
number of strips which are asymptotically of constant width.

Later, in Pontryagin (1942), some fundamental results concern-
ing the zeros of quasipolynomials have been obtained. In fact,
necessary and sufficient conditions are given for all solutions
of P(s,es) to lie in the left half-plane, where P(s,z) is a bi-
polynomial in s,z. These results are provided by extending the
methods used to prove the Routh-Hurwitz criterion for the zeros
of polynomials in order to be of negative real part.

Next, in the early 1950s, Hayes (1950) proposed an effi-
cient way to understand the asymptotic behaviour of solutions
of first-order delay-differential equations (DDEs) including a
pointwise delay through the employment of the spectral method
and thanks to a deep investigation of the zeros of the entire
function g : C 7→ C, g(s) := ses − a thereby providing a com-
plete characterization of the spectrum distribution of such a
first-order equation (see also Wright (1959) for further discus-
sions). It should be mentioned that such remarkable properties
appeared to be closely related to the well-known Lambert−W
functions (see, for instance, Yi et al. (2010) for some applica-
tions in control theory). Later, the result is generalized to the
first-order DDE of neutral type 2 in Wright (1961) by forging
direct methods for the computation of the corresponding real
spectral values and for the derivation of the least upper bound
of the said spectral abscissa. More recently, several works ex-
ploited Hayes results in control problems such as in delayed
feedback and in stabilization problems. Unfortunately, Hayes’
1 geometric determination of the characteristic roots’ distribution
2 see, e.g, Hale and Verduyn Lunel (1993) for the basic properties of the
solutions of DDEs as well as their classification

approach remains complicated and natural extensions to higher-
order retarded or neutral DDEs do not exist.

Afterwards, a remarkable property of the spectrum distribution
of low-order quasipolynomial functions with multiple spectral
values has been hinted at since the late 50’s in Pinney (1958).
As a matter of fact, it turns out that for the first and second-
order quasipolynomials, the corresponding spectral abscissa
coincides with the multiple spectral value. Regrettably, despite
its pioneering character, Pinney’s work has made no attempt
to address the general question since the employed approach
seems quite difficult to extend to higher-order equations.

A classical and a standard way to count the number of unstable
roots is to apply the well-known argument principle Ahlfors
(1979). The said count may also be obtained, in an easier and
more elegant way, by the inspection of argument variation.
Actually, the combination of the qualitative behavior of both the
real and the imaginary parts of the quasipolynomial function,
allows a straightforward application of the Stepan-Hassard
formula Stépán (1989); Hassard (1997).

Another strategy was thoroughly explored in a more adequate
algebraic framework by Brethé and Loiseau (1998) via the
introduction of the ring R, i.e., the set of all meromorphic func-
tions in C generically represented as P(s,e−τ s)/Q(s), where
Q is a polynomial in the Laplace complex variable s, P is a
bivariate polynomial in s and e−τ s, and τ is a fixed positive real
number. In fact, one pre-eminent remit regarding the algebraic
design of controllers of LTI differential time-delay systems is
the algorithmic investigation of R. In addition, the limitation of
this approach was observed in the early 2000s in Engelborghs
et al. (2001). Namely, a delayed controller is designed to stabi-
lize a dynamical system described by a first-order scalar differ-
ential equation, however, numerically, the closed-loop system’s
stability is highly sensitive to infinitesimal uncertainties.

3. FINITE SPECTRUM ASSIGNMENT (FSA)

Main idea: To the best of the authors’ knowledge, the FSA
approach is the oldest paradigm, it is based on a predictor able
to transform an infinite dimensional system into a finite dimen-
sional one, (see Olbrot (1978); Manitius and Olbrot (1979)).
When compared to the well-known Smith-Predictor, the FSA
has the advantage of arbitrarily assigning the closed-loop poles
and therefore can be applied to poorly damped and unstable
processes Watanabe and Ito (1981); Wang et al. (1998).

Description of the method: Consider the following linear sys-
tem with an input delay

ẋ(t) = Ax(t)+B0 u(t)+B1 u(t − τ), (1)
where x ∈ Rn, u ∈ Rm and τ is the delay of the system (τ > 0).

In Manitius and Olbrot (1979) it is proven that the feedback
of the following form: u(t) = F x(t)+F

∫ 0
−τ

e−(τ+θ)AB1 u(t +
θ)dθ , where F is an m× n matrix, yields a finite spectrum of
the closed-loop system. The location of this spectrum can be
completely controlled by the choice of F under some suitable
controllability conditions. This result remains true for the more
general systems governed by

ẋ(t) = Ax(t)+
∫ 0

−τ

dµ(θ)u(t +θ) (2)

where µ is an n×m matrix function of bounded variation and
the corresponding feedback has the following form



u(t) = F x(t)+F
∫ 0

−τ

∫ 0

σ

e(σ−θ)A dµ(σ)u(t +θ)dθ (3)

Advantages and limitations: From a practical viewpoint, the
digitization of the controller generated by the FSA is subject
to a discretization which unfortunately induces the loss of the
control of the closed-loop spectral values. In other words, one
has spectral values that exceed the range that one has assigned
(see Mondié and Michiels (2003); Engelborghs et al. (2001))
yielding the Spillover phenomena (the numerical controller pa-
rameters are not exactly the same as those computed via the
analytical design method). Indeed, this has been explained by
the sensitivity of the design to parameter variations. Accord-
ingly, the instability of the difference part of the control law
leads to the instability of the closed-loop system’s solution, see
Engelborghs et al. (2001). Notice also some concern with the
complexity of calculations compared to other existing methods.

4. ALGEBRAIC POLE PLACEMENT (APP)

Main idea: We consider the algebraic design paradigm devel-
oped in Brethé and Loiseau (1996); Brethé (1997); Brethé and
Loiseau (1998); Loiseau (2000). The principle of the APP con-
sists in keeping the spectral values with a real part below a cho-
sen threshold and removing from the spectrum some undesired
spectral values (typically unstable roots) via an Euclidean-like
division. Its main ingredient is an appropriate division in the
ring of transfer functions corresponding to pointwise or partic-
ular distributed delays, which yields fractions over R(s, e−τ s).
Furthermore, an additional set of spectral values is assigned to
define the exponential decay rate of the closed-loop system’s
solution. Even if the origin of this algebraic approach is inspired
from the FSA, its methodology differs in many ways.

Description of the method: We refer to Brethé and Loiseau
(1998). Consider the single-input delay system

ẋ(t) =
k

∑
i=0

Ai x(t − iτ)+
k

∑
i=0

bi u(t − iτ), (4)

where x ∈ Rn is the state of the system and u ∈ R is the output
of the system. For all i ∈ {0, ...,k}, Ai ∈ Rn×n, bi ∈ Rn×1 and
τ > 0 is the delay of the system. Consider the control law:

u(t) =
∫ N

0

(
f (θ)u(t −θ)+g(θ)x(t −θ)

)
dθ +

M

∑
i=0

pi x(t − iτ),

(5)

where N ∈ R+, f ∈ L2([0,N],R), g ∈ L2([0,N],R1×n); M ∈
N and ∀i ∈ {1, ...,M}, pi ∈ R. Applying the Laplace trans-
form with a zero initial condition to (4) and (5), one has,
respectively, sx = Ax+ bu and u = F1 u+F2 x, where A =

∑
k
i=0 Ai e−τ s i, b = ∑

k
i=0 bi e−τ s i, and F1 =

∫ N
0 f (θ)e−θ s dθ ;

F2 =
∫ N

0 g(θ)e−θ s dθ +∑
M
i=0 pi e−τ s i.

In the following, we provide a definition of the finite spectrum
assignability in terms of the characteristic polynomial of the
closed-loop system.
Definition 1. If there exist F1 and F2 such that

det
[

sIn −A −b
−F2 1−F1

]
=

n

∏
i=1

(s−αi)

for any set of n complex numbers αi such that any αi ∈
{α1, ...,αn} with ℑ(αi) ̸= 0 appears in conjugate pair, then the
system (4) is said to be finite-spectrum-assignable.

We consider the entire function which is the finite Laplace
transform of a distributed delay equation, called elementary
fraction Kamen et al. (1986) and defined as

θσ (s) =
1− e(−s+σ)τ

s−σ
, σ ∈ C.

Bézout-type identities. Consider Q ∈ R[s,e−sτ]p×p
, and P ∈

R[s,e−sτ]p×m
, D ∈ R[s,e−sτ]m×m

, N ∈ R[s,e−sτ]p×m
which sat-

isfy Q−1 · P = N ·D−1. Matrices Q and P are required to be
admissible i.e., their determinant is monic in s. We can always
find matrices Q, P, D and N that satisfy such a coprimeness
condition (see Morf et al. (1977)).
Lemma 2. ([Morf et al. (1977)], Theorem 5.1) Let Q and P
be two 2-D left-factor-coprime matrices over R[s,e−sτ ]. Then,
there exist E a polynomial matrix in s, and two matrices X ,Y
over R[s,e−sτ ] satisfying Q ·X +P ·Y = E.
Theorem 3. ([Brethé and Loiseau (1998)]) If Rank[Q|P] =
p,∀s ∈ C, then, ∃X ∈ R[s]p×p and Y ∈ R[s]m×p such that

Q ·X +P ·Y = Ip.

Theorem 4. ([Brethé and Loiseau (1998)]) The system (4) is
finite-spectrum-assignable if, and only if, it is spectrally con-

trollable, i.e., Rank
[

sIn −A,b
]
= n, ∀s ∈ C.

Advantages and limitations: This kind of algebraic method
becomes interesting when one knows beforehand the number
and location of undesired spectral values. However, in gen-
eral, standard complex analysis techniques, such as the argu-
ment principle, only provide the number of undesired spec-
tral values. In addition, the standard numerical methods only
produce approximations, so that, in practice, a considerable
symbolic/numeric issue arises, since the method requires their
exact value. Building effective algorithms to overcome the
latter symbolic/numeric issue remains challenging; the recon-
struction of a polynomial characterizing an exact spectral value
from a polynomial characterizing its approximation represents
an additional complexity for rendering the approach systematic.
Besides, another challenging question related to this algebraic
paradigm is the design of efficient and algorithmic calculations
of the involved objects such as the ring elements derived from
the corresponding Besout’s identity. Solving the emphasized
issues will surely break new ground for the pole placement
algebraic paradigm.

5. CONTINUOUS POLE PLACEMENT (CPP)

Main idea: The CPP method introduced in Michiels et al.
(2002) is the first “automated” numerical pole placement for re-
tarded time-delay systems. The CPP paradigm consists in defin-
ing a function that represents the spectral abscissa and to exploit
its dependency on the controller parameters, and the control
strategy can be summarized as follows: “Shift” the unstable
characteristic roots from C+ to C− in a “quasi-continuous” way
subject to the strong constraint that, during this shifting action,
stable characteristic roots are not crossing the imaginary axis
from C− to C+. We refer to Michiels and Niculescu (2014)
and references therein for further insights on the number of
controlled characteristic roots (which is related to the available
degrees of freedom induced by the controller structure) as well
as the interpretation of CPP as a local strategy to solve an
appropriate optimization problem where the objective function
(rightmost root) is not differentiable. It is worth mentioning that



CPP, initially applied to delay systems of retarded type, was
extended to neutral systems in Michiels and Vyhlidal (2005).

Description of the method: In order to describe this method, we
consider the investigation of the stability of

ẋ(t) = Ax(t)+Bu(t − τ), (6)
where A∈Rn×n, B∈Rn×1, x∈Rn is the state, u∈R is the input
and τ is the positive delay. Consider the linear control law:

u = KT x, K ∈ Rn×1, (7)
where KT is the transpose of K. This static state feedback
controller reveals the link between the CPP method and the
classical pole placement method.

The CPP method consists in applying slight changes to the
feedback gain so as to move the unstable eigenvalues to the
left half-plane. The key steps for this method may be declined
as follows. First, the rightmost eigenvalues are computed; an
automatic method for doing so is provided in Engelborghs
and Roose (1999). Second, the sensitivity of the rightmost
eigenvalues with respect to changes in the feedback gain is
assessed. Next, the rightmost eigenvalues are pushed in the
direction of the left half-plane by applying a slight alteration
to the feedback gain, owing to the aforementioned sensitivities.
Lastly, the rightmost uncontrolled eigenvalues are monitored:
if necessary, the number of controlled eigenvalues shall be
increased ; stop when stability is reached or when the available
degrees of freedom in the controller do not allow to further
reduce supℜ(s); otherwise, resume step 2. These different steps
are thoroughly detailed in Michiels et al. (2002).

Advantages and Drawbacks: Unlike FSA method, CPP ap-
proach does not render the closed-loop system finite-dimensional,
but consists instead of controlling the corresponding rightmost
eigenvalues. Such an idea represents a simple generalization of
the pole placement for finite-dimensional systems represented
by ordinary differential equations.

6. PARTIAL POLE PLACEMENT (PPP)

Main idea: The strategy of PPP consists in tuning stan-
dard controllers via the aforementioned multiplicity-induced-
dominancy (MID) property. Namely, one needs to determine
the conditions under which a given multiple root of a the char-
acteristic equation is dominant.

Description of the method: The procedure of PPP is carried out
in several steps. First, conditions on the system’s parameters
guaranteeing the existence of a multiple root are obtained.
Second, an affine change of variable is required to normalize the
characteristic equation. Next, a bound on the imaginary part of
roots of the normalized characteristic equation in the complex
right half-plane is derived. In fact, the frequency bound is
the main ingredient for the proof of the dominance, for this
purpose, a pseudo-code listing the instructions to be followed
to target a suitable frequency bound is given in Benarab et al.
(2022). The idea is to find an adequate truncation order of the
exponential term appearing in the normalized quasipolynomial
which depends only on the real part of its roots. By using a
purely polynomial analysis, one is able to obtain a suitable
bound of the imaginary part of the roots. Lastly, a certification
of the dominance of the multiple root is established.

Advantages and Drawbacks: Unlike the APP method, when it
comes to the PPP method, a priori knowledge on the number
of unstable roots and/or their location is not required. On the

one hand, it is reported that the PPP is easy to implement and
robust to uncertain delays or the model’s parameters Michiels
et al. (2017) and on the other hand, it applies to retarded as
well as neutral systems Boussaada et al. (2022). Furthermore, it
provides a procedure to assess the critical delay, see for instance
Molnar et al. (2021). The main limitation of the PPP is that the
actual knowledge allows to assign the spectral abscissa only on
the real axis, aside from few isolated cases, see for instance
Mazanti et al. (2020)), which may not be relevant in some
applications. We have yet to fathom the extent of this property,
notwithstanding the fact that often small delays are required to
perform the MID property which may again be a drawback in
some applications.

7. ILLUSTRATIVE EXAMPLES

7.1 Example 1

In order to illustrate the FSA method, consider the system
ẋ(t) = x(t)+u(t −1). (8)

The feedback in (3) reads in the case of system (8) as

u(t) = f x(t)+ f z(t), z(t) =
∫ 0

−1
e−(1+θ) u(t +θ)dθ . (9)

The transfer function of the new system in (9) is e−1−e−s

s−1 and
the pole s = 1 is cancelled by a zero of e−1 − e−s. The Laplace
transform of (8)-(9) yields the characteristic equation of the
closed-loop systems−1 −e−s

− f 1− f
e−1 − e−s

s−1

(x(s)
u(s)

)
= 0. (10)

Looking for the characteristic roots amounts to computing
the zeros of the determinant of the system, we have (s −
1)
(

1− f e−1−e−s

s−1

)
− f e−s = 0, which yields the zero s= 1+ f

e .
Note that the spectrum of the closed-loop system is finite, and
that the pole s = 1 is not cancelled by a corresponding zero, but
it is shifted from s = 1 to s = 1+ f

e by the feedback.

7.2 Example 2

In order to illustrate the APP method, we consider the system
ẋ(t) = A0 x(t)+A1 x(t −1)+b1 u(t −1)

where

x(t) =
(

x1(t)
x2(t)

)
, A0 =

(
0 0
0 1

)
, A1 =

(
1 −1
0 0

)
, b1 =

(
0
1

)
.

In this example, we aim to assign the poles at −1. We refer to
[Brethé and Loiseau (1998), proof of Theorem 9].

The feedback law which assigns the poles of the system at −1
is given by

u(t) =5x1(t)+

(
1+

4
(
−1− e−1 + e−2

)
e−2

)
x2(t −1)

+
∫ 1

0

(
(−τ +4−4 (1+ e) eτ) u(t −1− τ)

+(1−4eτ) u(t − τ)+(−τ +3) x1(t − τ)

)
dτ.



7.3 Example 3

In order to illustrate the CPP method, we consider the system
ẋ(t) = Ax(t)+bu(t − τ), u = KT x(t), (11)

where

A =

(−0.08 −0.03 0.2
0.2 −0.04 −0.005

−0.06 0.2 −0.07

)
, b =

(−0.1
−0.2
0.1

)
,τ = 5 (12)

The open-loop system is unstable (supℜ(s) = 0.108) and with
the feedback u in (11) where K = (0.719 1.04 1.29)T . The
spectral abscissa is shown in Fig. 1 as a function of the delay τ .
Note that the particular control law achieves stability for τ = 0,
the system is unstable for the nominal delay τ = 5, also, the
characteristic roots must cross the imaginary axis from left to
right and this occurs when τcrit = 3.95.

Fig. 1. Rightmost eigenvalues of the system (11)–(12) as a
function of the delay τ .

7.4 Example 4

Consider the problem of stabilization of the classical harmonic
oscillator, by a proportional-derivative controller

ẍ(t)+a0 x(t)+b1 ẋ(t − τ)+b0 x(t − τ) = 0,
for which the characteristic equation is

∆(s) = s2 +a0 +(b1 s+b0) e−τ s, (13)

which admits a real spectral value at s±= 1
τ
(−2+

√
−τ2 a0 +2),

if, and only if, the system parameters satisfy

b0 =
2
(
τ2 a0 +5τ s±+3

)
eτ s±

τ2 , b1 =
2 (τ s±+1)eτ s±

τ
.

(14)

Under the previous conditions (14), the spectral value s = s+ is
necessarily a dominant root for (13), unlike s− which cannot be
the spectral abscissa.

By substituting the gains of the controller (14) in the char-
acteristic equation (13) with a0 = 1, we obtain the particular
quasipolynomial ∆0. Now, imposing s = 0 to be a real root of
∆0, one is able to obtain numerically the corresponding delay
τ0 ≈ 1.0581 which yields a root on the imaginary axis.

Fig. 2 distinctly illustrates the effect of the delay on the multiple
root. Actually, for the delay τ = τ0 ≈ 1.0581 the multiple root

is at s = 0, then the reduction of the value of the delay τ pushes
the roots continuously from the imaginary axis to the right.

Fig. 2. Translation of the spectrum distribution of ∆0 according
to the delay change.

8. CONCLUSION

This paper discusses the existing pole placement paradigms. It
gives a presentation and an illustration of finite spectrum as-
signment, algebraic pole placement, continuous pole placement
and the partial pole placement method, via some simple dynam-
ical systems. Nevertheless, the extension of the application of
the control to infinite dimensional systems described by DDEs
remains a challenging task. Indeed, the question of pole place-
ment remains an open problem, adding to this, the problem of
coprimality for quasipolynomials with multiple delays.
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Brethé, D. and Loiseau, J. (1998). An effective algorithm
for finite spectrum assignment of single-input systems with
delays. Math. Comput. Simul, 45(3-4), 339–348.
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