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91190, Gif-sur-Yvette, France

guillaume.sandou@centralesupelec.fr

Emmanuel Godoy
Laboratoire des signaux et systèmes
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Abstract—This paper presents a modular approach to model
and control multi-source systems or networks. This method de-
rives from an energy-based modeling approach called functional
modeling in which predictive functional control algorithms have
been implemented. A concept of cost function is introduced and
associated to each source. The design of the control has several
objectives: remain as generic as possible, satisfy the needs from
the consumers and distribute flows in order to minimize the cost
functions. This methodology is applied to a use case consisting
in the management of an isolated production unit composed
of a wind power plant and a backup battery. The system is
modeled and controlled in order to ensure the active power
balance between consumers needs and sources supplies.

Index Terms—predictive functional control, functional mod-
eling, multi-source systems, wind power integration, energy
storage, active power balance, smart grid, energy management

I. INTRODUCTION

The climate change requires the acceleration of the energy
transition and the reduction of carbon emissions. A massive
development of smart grids is one of the solutions imple-
mented to achieve these objectives. Smart grids are complex
networks composed of several consumers and sources, whose
main objective is to improve energy management. In a first
place, these complex networks need to be modeled to observe
their behaviors through simulation. The second step is to de-
sign the control of these networks, whose main objective is to
optimize electricity production, distribution and consumption
while respecting all the constraints. The functional modeling
methodology is particularly well suited to develop both the
model and the control of a multi-source and multi-consumer
system, including smart grids.

The concept of functional modeling has been developed
in [1] and [2]. This modeling methodology is inspired from
the systemic approach introduced in [3] and the Bond Graph
representation, of which an exhaustive overview is given in
[4]. Functional modeling is a generic methodology using
modular functional blocks, the main ones being fully described

in [5], that exchange EMI (energy, matter or information)
flows between each other. The specificity of the methodology
lies in the fact that each functional element is composed
of both a control part and an operation part. The first one
determines the EMI needs of the element and sends them to the
neighbors. The second one collects the flow needs and supplies
information from neighbors to determine the behavior of the
functional element. The functional modeling is very useful in
the early stages of the system design, because of its relatively
easy and quick development. Moreover, its control part can be
reused later to control a more sophisticated model ([5], [6])
or the real system.

The main objective of this paper is to extend the gener-
icity of the functional methodology by incorporating some
predictive control in it. This integration enables to address
new issues, especially in smart grids. Indeed, these networks
involve a large variety of sources that have specific charac-
teristics, especially their dynamics, cost, operating range or
other constraints that can be taken into account with predictive
control. Thus, the objective is to implement a predictive
control technique in the control part of the functional elements.
The aim is to be able to model multi-source networks by
remaining as modular as possible and taking into account
the characteristics and constraints of the sources. For different
reasons detailed in section II-A, Predictive Functional Control
(PFC) seems to be the most suitable technique to achieve this
objective.

In Section II, after a brief overview of the different Model
Predictive Control (MPC) techniques, the PFC method is
presented in more detail and its implementation in functional
elements is described. Section III introduces a use case that
consists in modeling and controlling a production unit com-
posed of a wind power plant (WPP) and a battery energy
storage system (BESS). The model of the system is then
simulated and the results are discussed. Finally, concluding
remarks and perspectives are presented in Section IV.



II. IMPLEMENTATION OF PREDICTIVE FUNCTIONAL
CONTROL IN FUNCTIONAL MODELING

A. Model Predictive Control Overview

MPC is an advanced method of process control. The general
concept is to predict the effect of some manipulated variables
on the process output thanks to an internal model. The
second step consists in determining the sequence of values
of the manipulated variables that minimizes a predefined cost
function over a moving time horizon. This process is repeated
at each time step until the end of the process. MPC includes a
large set of different algorithms, such as PFC, DMC (Dynamic
Matrix Control) or GPC (Generalized Predictive Control). An
overview of these different methods of MPC with their own
characteristics, advantages and drawbacks are given in [7] and
[8].

B. Predictive Functional Control

Among the methods introduced above, PFC offers some
advantages, especially its modularity and its quite ease of im-
plementation. The two main characteristics of PFC technique
are:

• The cost function is minimized only on a subset of points
called coincident points instead of the whole prediction
horizon. This makes the resolution easier and faster.

• The control is build from a set of basis functions. This
enables to have quite complex inputs with only a few
parameters.

The general principle and formulation of PFC, which are
exhaustively described in [9], are detailed below.

1) At each time step, the process output is estimated over
a prediction horizon Hp thanks to a model.

2) A reference trajectory corresponding to the desired be-
havior of the process is defined.

3) The manipulated variable command sequence is cal-
culated in order to minimize the difference between
the predicted output and the reference trajectory at the
subset of coincident points.

4) The optimal command sequence is applied only over the
first sampling time Ts, at which the previous steps are
repeated.

Most of the time, PFC uses a state space model to describe
the process, as shown in (1).

{
xm(n) = Fm · xm(n− 1) +Gm · u(n− 1)
ym(n) = Cm · xm(n)

(1)

where u is the vector of manipulated variables, xm is the
state vector and ym is the output. The reference trajectory is
defined by (2).

yr(n+ i)− c(n+ i) = αi · (yp(n)− c(n)) (2)

where yr is the reference trajectory over the prediction
horizon, yp the real output of the process, c the setpoint, i
a time increment between 0 and Hp and α a coefficient that
determines the speed at which the setpoint is wanted to be

reached. An auto-compensation term, defined in (3), corrects
the output prediction ŷp, by estimating the future error between
the model and the real process from the current error.

ŷp(n+ i) = ym(n+ i) + ê(n+ i) (3)

As seen previously, the future control signal is structured
as a linear combination of basis functions, which often corre-
sponds to the polynomial basis given in (4).

u(n+ i) =

nB∑
k=1

µk(n) · ik−1 (4)

where nB is the number of basis functions. Assuming the
system being linear, the output can be broken down in a free
output ym,l, which is the response to a null command with
the current initial conditions, and a forced output ym,f , which
corresponds to the response with the current signal command
and null initial conditions. This decomposition is detailed in
(6).

ym(n+ i) = ym,l(n+ i) + ym,f (n+ i) (5)

 ym,l(n+ i) = Cm · F i
m · xm(n)

ym,f (n+ i) =
nB∑
k=1

nS∑
l=1

µk,l(n) · ybk,l(i) (6)

where nS is the number of manipulated variables, ybk,l(i)
the response of the model to the base function k after the time
increment i. The criterion δ to be minimized with predictive
control is given in (7).

δ(n) =

nh∑
j=1

(ŷp(n+ h(j))− yr(n+ h(j)))
2

+ λ · fc(ul, h)

(7)
where h is the vector of coincident points considered, nh is

the number of coincident points (size of h), fc a cost function
corresponding to the use of the manipulated variables and λ
a weighting coefficient between cost and performance.

In a real process, the manipulated variables are often con-
strained due to physical limitations, security issues, etc. In
this paper, we only consider constraints on the manipulated
variables. Taking into account constraints on state variables
would be possible but much more complex [9]. The limitation
values of each manipulated variable are determined for each
coincident point and the set of constraints given in (8) must
be taken into account to minimize the criterion.

ul,min(h) < ul(h) < ul,max(h) ∀l = 1 : nS (8)

C. Implementation of PFC in Functional Modeling

The aim of this section is to explain how the predictive
control is implemented in the functional elements. We consider
an energy node composed of several sources, a consumer and
a distributor.
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Criterion minimization:

δ(n) =

nh∑
j=1
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nS∑
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+ λ · fc(Xl, h)
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Fig. 1. Power and information flows in an energy node composed of two
sources, a distributor and a consumer

• The sources receive an EMI flow need and send back an
EMI flow supply according to their limitations.

• The consumer sends an EMI flow need and receives a
supply.

• The distributor collects the needs from the consumer and
distributes it to the sources according to their limitations.
It also collects the supplies and spreads them to the
consumer according to its request.

Fig.1 represents such an energy node with two sources.
Assuming a flat error between model process output, i.e.

ê(n+h) = e(n) = yp(n)−ym(n), the criterion defined in (7)
can be reformulated in a new expression given in (9).

δ(n) =

nh∑
j=1

(
nS∑
l=1

Xl(n, h(j))− d(n+ h(j))

)2

+λ ·fc(Xl, h)

(9)
with

Xl(n, h) = ym(n+ h)− ym(n) (10)

d(n+ h) = c(n+ h) + yp(n)− αh · (c(n) + yp(n)) (11)

The introduction of the variables X and d provides a good
breakdown of PFC between the sources and the distributor,
which promotes the genericity of the methodology. As it can
be seen in Fig.1, only four parameters are transmitted from
sources to the distributor: the power actually provided by
the source Pl,supply, the upper and lower limitations of the
source at the coincident points Xl,min and Xl,max and the cost
function fc,l related to the source. The resolution is broken
down into two distinct parts:

• The distributor, which does not need to know the pre-
diction models of the sources, solves the criterion mini-
mization problem using the values of the four parameters
transmitted by the sources and sends back a power need
to them (at each coincident point).

• Each source, thanks to its internal model, determines
the control variable sequence that best meets the need it
receives (in a least-square sense). The cost and limitations
are updated and sent to the distributor.

Fig. 2. Use case system diagram

This division of the problem enables to replace very easily any
source by another one or a more complex group of elements
(e.g. another network).

III. APPLICATION TO AN ELECTRIC PRODUCTION UNIT

One of the most challenging goals of smart grids is the
integration of renewable energy power plants to a large extent.
The increasing share of intermittent energy sources raises new
issues in the control of the grid. An additional storage unit
is often needed to ensure power balance between loads and
plant production and network stability. There are a lot of
publications that deal with the integration of WPP and a BESS
into the network and its issues such as power oscillation damp-
ing, output power smoothing, frequency regulation or active
power support. A review of these issues (and corresponding
references therein) is given in [10] and an overview of the
different energy storages, their characteristics and their use
with renewable energy sources integration can be found in
[11] and in [12].

A. System description and modeling

In this part, the methodology presented in the previous
section is applied to model and control a WPP and a backup
battery. The system is considered to be secluded and not
connected to the main network, e.g. on a remote island [13].
Although there is most of the time another backup source
(e.g. thermal plant) to ensure production under any weather
conditions, only the WPP and the battery will be considered
in this paper. This production plant has to provide electric
power to several local consumers. The main objective here
is to real-time balance the loads (consumer needs) and the
electric production (wind plant and battery).

From a functional point of view, the system can be modeled
by two sources (the WPP and the BESS), one consumer
that corresponds to the aggregation of all real consumers and
a distributor that distributes the needs to the sources and
concatenates the supplies to the consumer. Fig.2 provides a
diagram of the considered system, red arrows representing
electrical needs between the elements (supplies in the opposit
direction are implicits).
The battery needs to meet some requirements for this appli-
cation:

• High power density to be able to compensate the mis-
match between WPP prediction and real production.



• High energy density to supplement WPP over medium-
long time periods (∼1 hour).

• Short dynamic response to avoid frequency variation
issues.

According to [12], the BESS type should be either a Lead-
acid or a Lithium-ion battery. As the model does not need
high accuracy, the battery behavior can be approximated by
a first-order model. The parameters of the battery model are
given in TABLE I.
The wind turbines in the plant have a variable pitch, which
means that their blades angle can be continuously adjusted.
Pitch control is often used to maximize the wind turbine power
output ([14], [15]) but this technique can also be used to
regulate the power output, mainly for frequency regulation
issues ([16], [17]). The regulation also avoids to have to shut
down wind turbines when the production is too high for the
loads, which has an impact on the turbine lifespan when
this action is repeated too often. The relationship between
the pitch angle and the power output is non-linear but some
assumptions are done to simplify this relationship. The wind
turbine mechanical power output Pm is given by (12).

Pm = P · cp (12)

with cp the aerodynamic power coefficient and P the power
carried out by the wind defined in (13).

P =
1

2
· ρ ·A · v3 (13)

where ρ is the air density, A is the rotor swept area and v
the wind speed. An empirical expression of the aerodynamic
power coefficient, cited in [18] is given in (14).

cp = c1 · (c2 · Z − c3 · Λ− c4 · βx − c5) · e−c6·Z (14)

where β is the pitch angle, Λ is the tip-speed ratio (TSR),
which is obtained by dividing the speed of the tips of the
blades by the speed of the wind. The coefficients c1 to c6 and
x depend on the rotor type and the expression of Z is given
in (15).

Z =
1

Λ + 0.08 · β
− 0.035

1 + β3
(15)

The wind turbine power output actually depends on both
the pitch angle and the TSR. In this use case, we will only
focus on three-blades wind turbines, whose TSR is mostly
comprised between 5 and 10 according to [18]. Fig.3 shows
the influence of the pitch angle on cp for different values of
TSR, where the values of the coefficient c1 to c6 have been
taken from [18] and are equal to: c1 = 0.5, c2 = 116, c3 = 0.4,
c4 = 0, c5 = 5, c6 = 21. As we can see, the curves provided
are not linear but in the following, we will assume a linear
relationship between the ratio cp/cp,max and the pitch angle
and a range of twenty degrees between optimal angle and
the angle that negates power production. In other words, each
degree variation in the blade angle leads to a reduction of one
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Fig. 3. Influence of the pitch angle on the aerodynamic power coefficient

twentieth of the maximum power. This assumption is strong
but as the wind prediction is not accurate, the model does not
need to be very precise either.

TABLE I
WIND POWER PLANT AND BATTERY PARAMETERS

Parameter Value Unit
WPP nominal power 50 MW

Pitch angle maximal variation 2 °/s
Battery maximal charge power 15 MW

Battery maximal discharge power 15 MW
Battery energy capacity 30 MWh
Battery time constant 0.5 s

B. Simulation Results

This section presents the results of the model simulation
for a predefined scenario. The objective is the dynamic power
balance between the loads and the production over a quite
short time horizon (∼ 30 mn). The consumers needs variations
during this period time are often small and the needs will be
considered constant. The normalized real maximal production
profile and its upstream prediction (used in the PFC) are given
in Fig.4.

As the dynamic models of the battery and the WPP are quite
simple and their characteristic time is similar (∼ s), only one
coincident point is needed to solve the minimization problem
introduced in (9). Some requirements that we want to meet in
the simulation are listed below:

• Balance between loads and production must be achieved
at any cost (priority of performance over cost).

• For lifespan issues, the blade angle should not be changed
in an untimely way.

• The battery state of charge (SOC) should remain close to
a target value as far as possible, often 0.5.

• To a lesser extent, high frequency variations of battery
power should be avoided, especially around the target
SOC value.
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The first requirement can be met by setting up λ value (see
(7)) and the cost functions of each source are defined in (16)
and (17) to meet the other requirements.

fc,WPP = αWPP ·XWPP (n+ h) (16)

fc,bat = αbat ·Xbat(n+h) + γbat · (SOCtg −SOC) · ubat(n)
(17)

where αWPP , αbat and γbat are setting coefficients, which
should not affect performance but only power distribution
between the sources, and SOCtg the target battery SOC value.
In (17), the second term promotes the charge or the discharge
of the battery whether the SOC value is too low or too high.

TABLE II
SIMULATION PARAMETERS

Parameter Value Unit
h 1 s

SOCtg 0.5 -
SOCinit 0.5 -

λ 0.01 -
αWPP 1 -
αbat 0.01 -
γbat 2 -

Consumers needs 20 MW

The parameters values for the simulation are given in
TABLE II and the results are plotted in Fig.5. In the first
graph showing the consumers needs and the power that is
actually supplied to them, we can observe that both curves
are really close. The maximal setpoint overshoot is about 1
MW and the overshoot time is always less than 4 s. In the
first part from the beginning to about 800 s, the WPP maximal
power output is not sufficient to satisfy the consumers needs
and the battery supplements the WPP by discharging. As soon
as the WPP produces more than the needs, the battery stops
discharging and begins charging to get back to its SOC target
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value, which is almost reached in the end of the simulation.
The profile of the pitch angle, which value is proportional to
Pratio (Fig.5, last graph), is quite smooth, which meets the
second requirement.

The influence of the parameter γbat in the battery cost
function is then studied. The simulation is run with three
different values for this parameter: 0.2, 2 and 20. We can
make two main comments from the results given in Fig.6:

• The higher the value of γbat, the faster the SOC of the
battery converges towards its target value and the sharper
the profile of Pratio and thus the pitch angle profile.

• The lower the value of γbat, the longer the SOC conver-
gence and the smoother the pitch angle profile.

This parameter, as well as the target state of charge can
be changed during simulation, e.g. in function of long term
predictions. The power supplied to the consumers is not plotted
here because the profile is identical to the previous one, since
the change of the cost functions does not affect performance
issues. The use of cost functions associated to each source
enables to keep a modular approach, whose complexity is not
increased by adding other sources.



IV. CONCLUSION

This work presents a modular approach, based on the func-
tional modeling concept, to model and control a multi-source
system. In order to take into account some characteristics of
the sources such as their dynamic response, predictive control
algorithms have been implemented in the functional elements.
The PFC technique that has been used seems to be the most
suitable because of its modularity and ease of implementation.
The modeling methodology has been applied to an electricity
production system composed of a wind power plant and a
battery that must provide power to a consumer. A sensitivity
study on the cost functions parameters has been made to
highlight their influence.

This study case focused only on the balance of the active
power between sources and consumers but the issues concern-
ing frequency, reactive power, power limitations on lines, or
even control delays issues have not been taken into account
yet and constitute a future improvement.

In this study, the WPP and the battery were considered to
be isolated from any grid or any other source. An interesting
perspective would be to add another source in the system, e.g.
a thermal power plant, with an high cost function to ensure
power balance under any weather conditions.

A last objective is the modeling of a more complex grid
with several sources and several consumers in which the
interconnections between them and the network constraints
are taken into account.
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[15] E. J. N. Menezes, A. M. Araújo, and N. S. B. da Silva, “A review on
wind turbine control and its associated methods,” Journal of cleaner
production, vol. 174, pp. 945–953, 2018, publisher: Elsevier.

[16] P. Moutis, E. Loukarakis, S. Papathanasiou, and N. D. Hatziargyriou,
“Primary load-frequency control from pitch-controlled wind turbines,”
in 2009 IEEE Bucharest PowerTech. Bucharest, Romania: IEEE, Jun.
2009, pp. 1–7.

[17] Z. Wu, W. Gao, T. Gao, W. Yan, H. Zhang, S. Yan, and X. Wang, “State-
of-the-art review on frequency response of wind power plants in power
systems,” Journal of Modern Power Systems and Clean Energy, vol. 6,
no. 1, pp. 1–16, Jan. 2018.

[18] Z. Lubosny, Wind Turbine Operation in Electric Power Systems: Ad-
vanced Modeling, ser. Power Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003.


