M. Pugliatti, The epidemiology of multiple sclerosis in europe, European Journal of Neurology, vol.700, issue.722, 2006.

C. H. Polman, Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria, Annals of Neurology, vol.69, pp.292-302, 2011.
DOI : 10.1002/ana.22366

URL : http://onlinelibrary.wiley.com/doi/10.1002/ana.22366/pdf

E. Leray, Evidence for a two-stage disability progression in multiple sclerosis, Brain, vol.133, pp.1900-1913, 2010.
DOI : 10.1093/brain/awq076

URL : https://academic.oup.com/brain/article-pdf/133/7/1900/927470/awq076.pdf

D. Mortazavi, A. Z. Kouzani, and H. Soltanian-zadeh, Segmentation of multiple sclerosis lesions in mr images: a review, Neuroradiology, vol.54, pp.299-320, 2012.

X. Lladó, Segmentation of multiple sclerosis lesions in brain mri: A review of automated approaches, Information Sciences, vol.186, pp.164-185, 2012.

D. García-lorenzo, S. Francis, S. Narayanan, D. L. Arnold, and D. L. Collins, Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging, Medical Image Analysis, vol.17, pp.1-18, 2013.

M. Styner, 3D Segmentation in the Clinic: A Grand Challenge II: MS lesion segmentation, MIDAS Journal, 2008.

A. Carass, Longitudinal Multiple Sclerosis Lesion Segmentation: Resource & Challenge, Neuroimage, vol.148, pp.77-102, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01480156

F. Cotton, S. Kremer, S. Hannoun, S. Vukusic, and V. Dousset, OFSEP, a nationwide cohort of people with multiple sclerosis: Consensus minimal MRI protocol, Journal of Neuroradiology, vol.42, pp.133-140, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01378309

A. Akhondi-asl, L. Hoyte, M. E. Lockhart, and S. K. Warfield, A Logarithmic Opinion Pool Based STAPLE Algorithm for the Fusion of Segmentations With Associated Reliability Weights, IEEE Transactions on Medical Imaging, vol.33, 1997.

M. Filippi, Quantitative brain mri lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis, Neurology, vol.44, pp.635-635, 1994.

R. A. Rudick, J. Lee, J. Simon, and E. Fisher, Significance of t2 lesions in multiple sclerosis: A 13-year longitudinal study, Annals of Neurology, vol.60, pp.236-242, 2006.

A. S. Ribeiro, D. J. Nutt, and J. Mcgonigle, Which metrics should be used in non-linear registration evaluation?, In Medical Image Computing and Computer-Assisted Intervention-MICCAI, vol.2015, pp.388-395, 2015.

P. Coupé, An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Transactions on Medical Imaging, vol.27, pp.425-441, 2008.

O. Commowick, N. Wiest-daesslé, and S. Prima, Block-matching strategies for rigid registration of multimodal medical images, 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.700-703, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00681610

J. V. Manjón, P. Coupé, and . Volbrain, An Online MRI Brain Volumetry System, Frontiers in. Neuroinformatics, vol.10, p.30, 2016.

N. J. Tustison, N4ITK: Improved N3 Bias Correction, IEEE Transactions on Medical Imaging, vol.29, pp.1310-1320, 2010.

C. Barillot, Applying the Software as a Service Distribution Model to Manage Brain Imaging Research Repositories. Frontiers in information and communication technologies, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01404864

T. Glatard, A virtual imaging platform for multi-modality medical image simulation, IEEE Transactions on Medical Imaging, vol.32, pp.110-118, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00762497

A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, Advances in Neural Information Processing Systems, vol.14, pp.849-856, 2001.

M. Calvo and J. Oller, An explicit solution of information geodesic equations for the multivariate normal model, Statistics and Decisions, vol.9, 1991.

L. Dice, Measures of the amount of ecologic association between species, Ecology, vol.26, pp.297-302, 1945.

J. Beaumont, O. Commowick, and C. Barillot, Multiple sclerosis lesion segmentation using an automated multimodal graph cut, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAIMSSEG, pp.1-7, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01417378

D. García-lorenzo, J. Lecoeur, D. Arnold, D. L. Collins, and C. Barillot, Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts, 12th International Conference on Medical Image Computing and Computer Assisted Intervention, vol.5762, pp.584-591, 2009.

J. Beaumont, O. Commowick, and C. Barillot, Automatic Multiple Sclerosis lesion segmentation from Intensity-Normalized multichannel MRI, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAI-MSSEG, pp.8-15, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01424802

Y. Karpate, O. Commowick, and C. Barillot, Robust Detection of Multiple Sclerosis Lesions from Intensity-Normalized MultiChannel MRI, SPIE Medical Imaging, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01127692

F. Forbes, S. Doyle, D. Garcia-lorenzo, C. Barillot, and M. Dojat, A weighted multi-sequence markov model for brain lesion segmentation, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), pp.225-232, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00723808

F. Forbes, S. Doyle, D. García-lorenzo, C. Barillot, and M. Dojat, Adaptive weighted fusion of multiple MR sequences for brain lesion segmentation, ISBI, pp.69-72, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00723807

A. Khademi, A. Venetsanopoulos, and A. R. Moody, Generalized method for partial volume estimation and tissue segmentation in cerebral magnetic resonance images, Journal of Medical Imaging, vol.1, p.14002, 2014.

J. Knight and A. Khademi, MS Lesion Segmentation Using FLAIR MRI Only, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAI-MSSEG, pp.21-28, 2016.

A. Mahbod, M. Chowdhury, Ö. Smedby, and C. Wang, Automatic brain segmentation using artificial neural networks with shape context, Pattern Recognition Letters, vol.101, pp.74-79, 2018.
DOI : 10.1016/j.patrec.2017.11.016

A. Mahbod, C. Wang, and Ö. Smedby, Automatic multiple sclerosis lesion segmentation using hybrid artificial neural networks, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAIMSSEG, pp.29-36, 2016.

R. Scientific, , vol.8, 2018.

R. Mckinley, Nabla-net: a deep dag-like convolutional architecture for biomedical image segmentation: application to whitematter lesion segmentation in multiple sclerosis, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAI-MSSEG, pp.37-43, 2016.

J. Muschelli, E. Sweeney, J. Maronge, and C. Crainiceanu, Prediction of MS Lesions using Random Forests, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing InfrastructureMICCAI-MSSEG, pp.45-50, 2016.

M. Cabezas, Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding, Computer Methods and Programs in Biomedicine, vol.115, pp.147-161, 2014.

E. Roura, A toolbox for multiple sclerosis lesion segmentation, Neuroradiology, vol.57, pp.1031-1043, 2015.
DOI : 10.1007/s00234-015-1552-2

M. M. Santos, P. R. Diniz, A. G. Silva-filho, and W. P. Santos, Evaluation-Oriented Training via Surrogate Metrics for Multiple Sclerosis Segmentation, LNCS, vol.9901, pp.398-405, 2016.
DOI : 10.1007/978-3-319-46723-8_46

M. M. Santos, P. R. Diniz, A. G. Silva-filho, and W. P. Santos, Evaluation-Oriented Training Strategy on MS Segmentation Challenge, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAI-MSSEG, pp.57-62, 2016.

X. Tomas-fernandez and S. K. Warfield, A Model of Population and Subject (MOPS) Intensities With Application to Multiple Sclerosis Lesion Segmentation, IEEE Transactions on Medical Imaging, vol.34, pp.1349-1361, 2015.

X. Tomas-fernandez, S. K. Warfield, and . Mri, Robust Brain Tissue Segmentation with application to Multiple Sclerosis, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAIMSSEG, pp.63-67, 2016.

H. Urien, I. Buvat, N. Rougon, M. Soussan, and I. Bloch, Brain lesion detection in 3D PET images using max-trees and a new spatial context criterion, International Symposium on Mathematical Morphology (ISMM), vol.10225, pp.455-466, 2017.

H. Urien, I. Buvat, N. Rougon, and I. Bloch, A 3D hierarchical multimodal detection and segmentation method for multiple sclerosis lesions in MRI, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing Infrastructure-MICCAI-MSSEG, pp.69-73, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01417465

S. Valverde, Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach, Neuroimage, vol.155, pp.159-168, 2017.
DOI : 10.1016/j.neuroimage.2017.04.034

URL : http://arxiv.org/pdf/1702.04869

F. Vera-olmos, H. Melero, and N. Malpica, Random Forest for Multiple Sclerosis Lesion Segmentation, Proceedings of the 1st MICCAI Challenge on Multiple Sclerosis Lesions Segmentation Challenge Using a Data Management and Processing InfrastructureMICCAI-MSSEG, pp.81-86, 2016.